3 research outputs found

    3D-printed hierarchical arrangements of actuators mimicking biological muscular architectures

    Get PDF
    : Being able to imitate the sophisticated muscular architectures that characterize the animal kingdom in biomimetic machines would allow them to perform articulated movements with the same naturalness. In soft robotics, multiple actuation technologies have been developed to mimic the contraction of a single natural muscle, but a few of them can be implemented in complex architectures capable of diversifying deformations and forces. In this work, we present three different biomimetic muscle architectures, i.e., fusiform, parallel, and bipennate, which are based on hierarchical arrangements of multiple pneumatic actuators. These biomimetic architectures are monolithic structures composed of thirty-six pneumatic actuators each, directly 3D printed through low-cost printers and commercial materials without any assembly phase. The considerable number of actuators involved enabled the adoption and consequent comparison of two regulation strategies: one based on input modulation, commonly adopted in pneumatic systems, and one based on fiber recruitment, mimicking the regulation behavior of natural muscles. The straightforward realization through additive manufacturing processes of muscle architectures regulated by fiber recruitment strategies facilitates the development of articulated muscular systems for biomimetics machines increasingly similar to the natural ones

    Multifilament pneumatic artificial muscles to mimic the human neck

    Get PDF
    Pneumatic Artificial Muscles (PAMs) are actuators that resemble human muscles, and offer an attractive performance in various aspects including robustness, simplicity, high specific power and high force for a given volume. These characteristics render them good candidates for use in humanoid robots. The use of traditional PAMs to closely mimic human structures, however, is difficult due to their relatively large size and relatively fixed designs. The recent development of multifilament PAMs enables the realization of humanoid robots that more closely mimic the human anatomy. In this paper, the application of multifilament PAMs to mimic the human neck is presented. First, the main structures of the human neck anatomy in terms of bones, ligaments and muscles are identified and detailed. The design to mimic each of these structures is subsequently described, together with the most relevant parts of the manufacturing process. The integrated neck is then presented, and the method to actuate it is outlined. The results of motion of the artificial neck when actuating different groups of muscles that mimic those in the human anatomy are reported, confirming a motion that is equivalent to that of the human neck. The results also indicate a range of motion of the robot neck somewhat lower than that of its human counterpart, and the reasons for this are discussed. Finally, future directions for improved motion range, stability, durability and efficiency are outlined

    Robotic manipulators for in situ inspections of jet engines

    Get PDF
    Jet engines need to be inspected periodically and, in some instances, repaired. Currently, some of these maintenance operations require the engine to be removed from the wing and dismantled, which has a significant associated cost. The capability of performing some of these inspections and repairs while the engine is on-wing could lead to important cost savings. However, existing technology for on-wing operations is limited, and does not suffice to satisfy some of the needs. In this work, the problem of performing on-wing operations such as inspection and repair is analysed, and after an extensive literature review, a novel robotic system for the on-wing insertion and deployment of probes or other tools is proposed. The system consists of a fine-positioner, which is a miniature and dexterous robotic manipulator; a gross-positioner, which is a device to insert the fine-positioner to the engine region of interest; an end-effector, such as a probe; a deployment mechanism, which is a passive device to ensure correct contact between probe and component; and a feedback system that provides information about the robot state for control. The research and development work conducted to address the main challenges to create this robotic system is presented in this thesis. The work is focussed on the fine-positioner, as it is the most relevant and complex part of the system. After a literature review of relevant work, and as part of the exploration of potential robot concepts for the system, the kinematic capabilities of concentric tube robots (CTRs) are first investigated. The complete set of stable trajectories that can be traced in follow-the-leader motion is discovered. A case study involving simulations and an experiment is then presented to showcase and verify the work. The research findings indicate that CTRs are not suitable for the fine-positioner. However, they show that CTRs with non-annular cross section can be used for the gross-positioner. In addition, the new trajectories discovered show promise in minimally invasive surgery (MIS). Soft robotic manipulators with fluidic actuation are then selected as the most suitable concept for the fine-positioner. The design of soft robotic manipulators with fluidic actuation is investigated from a general perspective. A general framework for the design of these devices is proposed, and a set of design principles are derived. These principles are first applied in a MIS case study to illustrate and verify the work. Finite element (FE) simulations are then reported to perform design optimisation, and thus complete the case study. The design study is then applied to determine the most suitable design for the fine-positioner. An additional analytical derivation is developed, followed by FE simulations, which extend those of the case study. Eventually, this work yields a final design of the fine-positioner. The final design found is different from existing ones, and is shown to provide an important performance improvement with respect to existing soft robots in terms of wrenches it can support. The control of soft and continuum robots relevant to the fine-positioner is also studied. The full kinematics of continuum robots with constant curvature bending and extending capabilities are first investigated, which correspond to a preliminary design concept conceived for the fine-positioner. Closed-form solutions are derived, closing an open problem. These kinematics, however, do not exactly match the final fine-positioner design selected. Thus, an alternative control approach based on closed-loop control laws is then adopted. For this, a mechanical model is first developed. Closed-loop control laws are then derived based on this mechanical model for planar operation of a segment of the fine-positioner. The control laws obtained represent the foundation for the subsequent development of control laws for a full fine-positioner operating in 3D. Furthermore, work on path planning for nonholonomic systems is also reported, and a new algorithm is presented, which can be applied for the insertion of the overall robotic system. Solutions to the other parts of the robotic system for on-wing operations are also reported. A gross-positioner consisting of a non-annular CTR is proposed. Solutions for a deployment mechanism are also presented. Potential feedback systems are outlined. In addition, methods for the fabrication of the systems are reported, and the electronics and systems required for the assembly of the different parts are described. Finally, the use of the robotic system to perform on-wing inspections in a representative case study is studied to determine the viability. Inspection strategies are shortlisted, and simulations and experiments are used to study them. The results, however, indicate that inspection is not viable since the signal to noise ratio is excessively low. Nonetheless, the robotic system proposed, and the research conducted, are still expected to be useful to perform a range of on-wing operations that require the insertion and deployment of a probe or other end-effector. In addition, the trajectories discovered for CTRs, the design found for the fine-positioner, and the advances on control, also have significant potential in MIS, where there is an important need for miniature robotic manipulators and similar devices.Open Acces
    corecore