6 research outputs found

    URL-BERT: Training Webpage Representations via Social Media Engagements

    Full text link
    Understanding and representing webpages is crucial to online social networks where users may share and engage with URLs. Common language model (LM) encoders such as BERT can be used to understand and represent the textual content of webpages. However, these representations may not model thematic information of web domains and URLs or accurately capture their appeal to social media users. In this work, we introduce a new pre-training objective that can be used to adapt LMs to understand URLs and webpages. Our proposed framework consists of two steps: (1) scalable graph embeddings to learn shallow representations of URLs based on user engagement on social media and (2) a contrastive objective that aligns LM representations with the aforementioned graph-based representation. We apply our framework to the multilingual version of BERT to obtain the model URL-BERT. We experimentally demonstrate that our continued pre-training approach improves webpage understanding on a variety of tasks and Twitter internal and external benchmarks

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio
    corecore