97,782 research outputs found

    Caching in Multidimensional Databases

    Get PDF
    One utilisation of multidimensional databases is the field of On-line Analytical Processing (OLAP). The applications in this area are designed to make the analysis of shared multidimensional information fast [9]. On one hand, speed can be achieved by specially devised data structures and algorithms. On the other hand, the analytical process is cyclic. In other words, the user of the OLAP application runs his or her queries one after the other. The output of the last query may be there (at least partly) in one of the previous results. Therefore caching also plays an important role in the operation of these systems. However, caching itself may not be enough to ensure acceptable performance. Size does matter: The more memory is available, the more we gain by loading and keeping information in there. Oftentimes, the cache size is fixed. This limits the performance of the multidimensional database, as well, unless we compress the data in order to move a greater proportion of them into the memory. Caching combined with proper compression methods promise further performance improvements. In this paper, we investigate how caching influences the speed of OLAP systems. Different physical representations (multidimensional and table) are evaluated. For the thorough comparison, models are proposed. We draw conclusions based on these models, and the conclusions are verified with empirical data.Comment: 14 pages, 5 figures, 8 tables. Paper presented at the Fifth Conference of PhD Students in Computer Science, Szeged, Hungary, 27 - 30 June 2006. For further details, please refer to http://www.inf.u-szeged.hu/~szepkuti/papers.html#cachin

    Towards a query language for annotation graphs

    Get PDF
    The multidimensional, heterogeneous, and temporal nature of speech databases raises interesting challenges for representation and query. Recently, annotation graphs have been proposed as a general-purpose representational framework for speech databases. Typical queries on annotation graphs require path expressions similar to those used in semistructured query languages. However, the underlying model is rather different from the customary graph models for semistructured data: the graph is acyclic and unrooted, and both temporal and inclusion relationships are important. We develop a query language and describe optimization techniques for an underlying relational representation.Comment: 8 pages, 10 figure

    Differentiated Multiple Aggregations in Multidimensional Databases

    Get PDF
    International audienceMany models have been proposed for modeling multidimensional data warehouse and most consider a same function to determine how measure values are aggregated according to different data detail levels. We provide a conceptual model that supports (1) multiple aggregations, associating to the same measure a different aggregation function according to analysis axes or hierarchies, and (2) differentiated aggregation, allowing specific aggregations at each detail level. Our model is based on a graphical formalism that allows controlling the validity of aggregation functions (distributive, algebraic or holistic). We also show how conceptual modeling can be used, in an R-OLAP environment, for building lattices of pre-computed aggregates

    Implementation of the Multidimensional Modeling Concepts into Object-Relational Databases

    Get PDF
    A key to survival in the business world is being able to analyze, plan and react to changing business conditions as fast as possible. With multidimensional models the managers can explore information at different levels of granularity and the decision makers at all levels can quickly respond to changes in the business climate-the ultimate goal of business intelligence. This paper focuses on the implementation of the multidimensional concepts into object-relational databases.e-business, database
    • 

    corecore