385 research outputs found

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    Wind Energy and Multicriteria Analysis in Making Decisions on the Location of Wind Farms: A Case Study in the North-Eastern of Poland

    Get PDF
    This chapter presents an investigation of different methods of multicriteria analysis and different rules of proceedings that have to be taken into account for making decision about location of a wind farm with application in the north-eastern (NE) Poland. Ten multicriteria analyses were discussed taking into account the main criteria on which they are based on utility functions (MAUT, AHP, and DEMATEL), relationship outranking (ELECTRE, PROMETHEE, and ARROW-RAYNAUD), distances (TOPSIS), and decision support (BORDA ranking methods and their modified and COPELAND). Taking into account of nine criteria that should be met by the location of 15 wind turbines in Krynki and Szudzialowo communities, the main three criteria (C3, C8, and C9) were found to differentiate location of eight wind turbines (T-6–T-13), according to two variants (I and II). The Borda ranking method proved that from among the two variants considered, the more suitable location of wind turbines is second variant W II than first variant W I. Variant W II had a higher altitude of the terrain (C3) and less risk of impact on birds (C8) and bats species (C9) than variant W I

    Planning Models for Distribution Grid

    Get PDF
    planning and expansion models of the electrical grid to guarantee mainly the energy supply for current and future loads and the technical and operational criteria of the grid, requiring for this, to make an orderly sequence of investments along the planning horizon. Nevertheless, the ongoing integration of distributed generation and energy storage devices has been leading to consider some changes on those models focus to deal with the complexity those integrations bring with them. In this context, this paper presents a brief review of distribution planning and expansion models with the perspective of identifying approaches, objective functions used, uncertainties analyzed, the computational and evolutionary techniques used, the dimension of the grid under analyses, among other aspects considered to solve the planning and expansion problem. This document will provide a background to find out the further works in this field

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems
    corecore