17 research outputs found

    A Novel Progressive Multi-label Classifier for Classincremental Data

    Full text link
    In this paper, a progressive learning algorithm for multi-label classification to learn new labels while retaining the knowledge of previous labels is designed. New output neurons corresponding to new labels are added and the neural network connections and parameters are automatically restructured as if the label has been introduced from the beginning. This work is the first of the kind in multi-label classifier for class-incremental learning. It is useful for real-world applications such as robotics where streaming data are available and the number of labels is often unknown. Based on the Extreme Learning Machine framework, a novel universal classifier with plug and play capabilities for progressive multi-label classification is developed. Experimental results on various benchmark synthetic and real datasets validate the efficiency and effectiveness of our proposed algorithm.Comment: 5 pages, 3 figures, 4 table

    Distributed Online Big Data Classification Using Context Information

    Full text link
    Distributed, online data mining systems have emerged as a result of applications requiring analysis of large amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a distributed online data classification framework where data is gathered by distributed data sources and processed by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data streams either by using their locally available classification functions or by helping each other by classifying each other's data. Importantly, since the data is gathered at different locations, sending the data to another learner to process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from a better classification will exceed the costs. We model the problem of joint classification by the distributed and heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is characterized by a specific context. We develop a distributed online learning algorithm for which we can prove sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic regret results characterizing the performance of the proposed algorithm

    Online Learning with an Almost Perfect Expert

    Full text link
    We study the multiclass online learning problem where a forecaster makes a sequence of predictions using the advice of nn experts. Our main contribution is to analyze the regime where the best expert makes at most bb mistakes and to show that when b=o(log4n)b = o(\log_4{n}), the expected number of mistakes made by the optimal forecaster is at most log4n+o(log4n)\log_4{n} + o(\log_4{n}). We also describe an adversary strategy showing that this bound is tight and that the worst case is attained for binary prediction

    Distributed Online Learning via Cooperative Contextual Bandits

    Full text link
    In this paper we propose a novel framework for decentralized, online learning by many learners. At each moment of time, an instance characterized by a certain context may arrive to each learner; based on the context, the learner can select one of its own actions (which gives a reward and provides information) or request assistance from another learner. In the latter case, the requester pays a cost and receives the reward but the provider learns the information. In our framework, learners are modeled as cooperative contextual bandits. Each learner seeks to maximize the expected reward from its arrivals, which involves trading off the reward received from its own actions, the information learned from its own actions, the reward received from the actions requested of others and the cost paid for these actions - taking into account what it has learned about the value of assistance from each other learner. We develop distributed online learning algorithms and provide analytic bounds to compare the efficiency of these with algorithms with the complete knowledge (oracle) benchmark (in which the expected reward of every action in every context is known by every learner). Our estimates show that regret - the loss incurred by the algorithm - is sublinear in time. Our theoretical framework can be used in many practical applications including Big Data mining, event detection in surveillance sensor networks and distributed online recommendation systems

    Online Clustering of Bandits

    Full text link
    We introduce a novel algorithmic approach to content recommendation based on adaptive clustering of exploration-exploitation ("bandit") strategies. We provide a sharp regret analysis of this algorithm in a standard stochastic noise setting, demonstrate its scalability properties, and prove its effectiveness on a number of artificial and real-world datasets. Our experiments show a significant increase in prediction performance over state-of-the-art methods for bandit problems.Comment: In E. Xing and T. Jebara (Eds.), Proceedings of 31st International Conference on Machine Learning, Journal of Machine Learning Research Workshop and Conference Proceedings, Vol.32 (JMLR W&CP-32), Beijing, China, Jun. 21-26, 2014 (ICML 2014), Submitted by Shuai Li (https://sites.google.com/site/shuailidotsli
    corecore