21 research outputs found

    Multichannel Music Separation with Deep Neural Networks

    Get PDF
    International audienceThis article addresses the problem of multichannel music separation. We propose a framework where the source spectra are estimated using deep neural networks and combined with spatial covariance matrices to encode the source spatial characteristics. The parameters are estimated in an iterative expectation-maximization fashion and used to derive a multichannel Wiener filter. We evaluate the proposed framework for the task of music separation on a large dataset. Experimental results show that the method we describe performs consistently well in separating singing voice and other instruments from realistic musical mixtures

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201

    Adversarial Semi-Supervised Audio Source Separation applied to Singing Voice Extraction

    Full text link
    The state of the art in music source separation employs neural networks trained in a supervised fashion on multi-track databases to estimate the sources from a given mixture. With only few datasets available, often extensive data augmentation is used to combat overfitting. Mixing random tracks, however, can even reduce separation performance as instruments in real music are strongly correlated. The key concept in our approach is that source estimates of an optimal separator should be indistinguishable from real source signals. Based on this idea, we drive the separator towards outputs deemed as realistic by discriminator networks that are trained to tell apart real from separator samples. This way, we can also use unpaired source and mixture recordings without the drawbacks of creating unrealistic music mixtures. Our framework is widely applicable as it does not assume a specific network architecture or number of sources. To our knowledge, this is the first adoption of adversarial training for music source separation. In a prototype experiment for singing voice separation, separation performance increases with our approach compared to purely supervised training.Comment: 5 pages, 2 figures, 1 table. Final version of manuscript accepted for 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Implementation available at https://github.com/f90/AdversarialAudioSeparatio

    Self-Supervised Music Source Separation Using Vector-Quantized Source Category Estimates

    Full text link
    Music source separation is focused on extracting distinct sonic elements from composite tracks. Historically, many methods have been grounded in supervised learning, necessitating labeled data, which is occasionally constrained in its diversity. More recent methods have delved into N-shot techniques that utilize one or more audio samples to aid in the separation. However, a challenge with some of these methods is the necessity for an audio query during inference, making them less suited for genres with varied timbres and effects. This paper offers a proof-of-concept for a self-supervised music source separation system that eliminates the need for audio queries at inference time. In the training phase, while it adopts a query-based approach, we introduce a modification by substituting the continuous embedding of query audios with Vector Quantized (VQ) representations. Trained end-to-end with up to N classes as determined by the VQ's codebook size, the model seeks to effectively categorise instrument classes. During inference, the input is partitioned into N sources, with some potentially left unutilized based on the mix's instrument makeup. This methodology suggests an alternative avenue for considering source separation across diverse music genres. We provide examples and additional results online.Comment: 4 pages, 2 figures, 1 table; Accepted at the 37th Conference on Neural Information Processing Systems (2023), Machine Learning for Audio Worksho
    corecore