14 research outputs found

    Statistical Learning in Automated Troubleshooting: Application to LTE Interference Mitigation

    Full text link
    This paper presents a method for automated healing as part of off-line automated troubleshooting. The method combines statistical learning with constraint optimization. The automated healing aims at locally optimizing radio resource management (RRM) or system parameters of cells with poor performance in an iterative manner. The statistical learning processes the data using Logistic Regression (LR) to extract closed form (functional) relations between Key Performance Indicators (KPIs) and Radio Resource Management (RRM) parameters. These functional relations are then processed by an optimization engine which proposes new parameter values. The advantage of the proposed formulation is the small number of iterations required by the automated healing method to converge, making it suitable for off-line implementation. The proposed method is applied to heal an Inter-Cell Interference Coordination (ICIC) process in a 3G Long Term Evolution (LTE) network which is based on soft-frequency reuse scheme. Numerical simulations illustrate the benefits of the proposed approach.Comment: IEEE Transactions On Vehicular Technology 2010 IEEE transactions on vehicular technolog

    Joint Scheduling for Multi-Service in Coordinated Multi-Point OFDMA Networks

    Get PDF
    In this paper, the issues upon user scheduling in the downlink packet transmission for multiple services are addressed for coordinated multi-point (CoMP) OFDMA networks. We consider mixed traffic with voice over IP (VOIP) and best effort (BE) services. In order to improve cell-edge performance and guarantee diverse quality of service (QoS), a utility-based joint scheduling algorithm is proposed, which consists of two steps: ant colony optimization (ACO) based joint user selection and greedy subchannel assignment. We compare the proposed algorithm with the greedy user selection (GUC) based scheme. Via simulation results, we show that 95% of BE users are satsified with average cell-edge data rate greater than 200kbps by using either of the two algorithms. Whereas, our proposed algorithm ensures that more than 95% of VoIP users are satisfied with packet drop ratio less than 2%, compared to 78% by the GUC based algorithm

    Graph-Based Radio Resource Management for Vehicular Networks

    Full text link
    This paper investigates the resource allocation problem in device-to-device (D2D)-based vehicular communications, based on slow fading statistics of channel state information (CSI), to alleviate signaling overhead for reporting rapidly varying accurate CSI of mobile links. We consider the case when each vehicle-to-infrastructure (V2I) link shares spectrum with multiple vehicle-to-vehicle (V2V) links. Leveraging the slow fading statistical CSI of mobile links, we maximize the sum V2I capacity while guaranteeing the reliability of all V2V links. We propose a graph-based algorithm that uses graph partitioning tools to divide highly interfering V2V links into different clusters before formulating the spectrum sharing problem as a weighted 3-dimensional matching problem, which is then solved through adapting a high-performance approximation algorithm.Comment: 7 pages; 5 figures; accepted by IEEE ICC 201

    Traffic-Driven Spectrum Allocation in Heterogeneous Networks

    Full text link
    Next generation cellular networks will be heterogeneous with dense deployment of small cells in order to deliver high data rate per unit area. Traffic variations are more pronounced in a small cell, which in turn lead to more dynamic interference to other cells. It is crucial to adapt radio resource management to traffic conditions in such a heterogeneous network (HetNet). This paper studies the optimization of spectrum allocation in HetNets on a relatively slow timescale based on average traffic and channel conditions (typically over seconds or minutes). Specifically, in a cluster with nn base transceiver stations (BTSs), the optimal partition of the spectrum into 2n2^n segments is determined, corresponding to all possible spectrum reuse patterns in the downlink. Each BTS's traffic is modeled using a queue with Poisson arrivals, the service rate of which is a linear function of the combined bandwidth of all assigned spectrum segments. With the system average packet sojourn time as the objective, a convex optimization problem is first formulated, where it is shown that the optimal allocation divides the spectrum into at most nn segments. A second, refined model is then proposed to address queue interactions due to interference, where the corresponding optimal allocation problem admits an efficient suboptimal solution. Both allocation schemes attain the entire throughput region of a given network. Simulation results show the two schemes perform similarly in the heavy-traffic regime, in which case they significantly outperform both the orthogonal allocation and the full-frequency-reuse allocation. The refined allocation shows the best performance under all traffic conditions.Comment: 13 pages, 11 figures, accepted for publication by JSAC-HC
    corecore