175 research outputs found

    Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Full text link
    Linear precoding exploits the spatial degrees of freedom offered by multi-antenna transmitters to serve multiple users over the same frequency resources. The present work focuses on simultaneously serving multiple groups of users, each with its own channel, by transmitting a stream of common symbols to each group. This scenario is known as physical layer multicasting to multiple co-channel groups. Extending the current state of the art in multigroup multicasting, the practical constraint of a maximum permitted power level radiated by each antenna is tackled herein. The considered per antenna power constrained system is optimized in a maximum fairness sense. In other words, the optimization aims at favoring the worst user by maximizing the minimum rate. This Max-Min Fair criterion is imperative in multicast systems, where the performance of all the receivers listening to the same multicast is dictated by the worst rate in the group. An analytic framework to tackle the Max-Min Fair multigroup multicasting scenario under per antenna power constraints is therefore derived. Numerical results display the accuracy of the proposed solution and provide insights to the performance of a per antenna power constrained system.Comment: Presented in IEEE ICC 2014, Sydney, AUS. arXiv admin note: substantial text overlap with arXiv:1406.755

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Sum Rate Maximizing Multigroup Multicast Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is herein considered, a model known as physical layer multicasting to multiple co-channel groups. In the recently proposed context of per-antenna power constrained multigroup multicasting, the present work focuses on a novel system design that aims at maximizing the total achievable throughput. Towards increasing the system sum rate, the available power resources need to be allocated to well conditioned groups of users. A detailed solution to tackle the elaborate sum rate maximization multigroup multicast problem under per-antenna power constraints is therefore derived. Numerical results are presented to quantify the gains of the proposed algorithm over heuristic solutions. Besides Rayleigh faded channels, the solution is also applied to uniform linear array transmitters operating in the far field, where line-ofsight conditions are realized. In this setting, a sensitivity analysis with respect to the angular separation of co-group users is included. Finally, a simple scenario providing important intuitions for the sum rate maximizing multigroup multicast solutions is elaborated.Comment: Submitted to IEEE GlobeCom 2014, Austin, TX. arXiv admin note: substantial text overlap with arXiv:1406.7699, arXiv:1406.755

    Multicast Multigroup Beamforming for Per-antenna Power Constrained Large-scale Arrays

    Get PDF
    Large in the number of transmit elements, multi-antenna arrays with per-element limitations are in the focus of the present work. In this context, physical layer multigroup multicasting under per-antenna power constrains, is investigated herein. To address this complex optimization problem low-complexity alternatives to semi-definite relaxation are proposed. The goal is to optimize the per-antenna power constrained transmitter in a maximum fairness sense, which is formulated as a non-convex quadratically constrained quadratic problem. Therefore, the recently developed tool of feasible point pursuit and successive convex approximation is extended to account for practical per-antenna power constraints. Interestingly, the novel iterative method exhibits not only superior performance in terms of approaching the relaxed upper bound but also a significant complexity reduction, as the dimensions of the optimization variables increase. Consequently, multicast multigroup beamforming for large-scale array transmitters with per-antenna dedicated amplifiers is rendered computationally efficient and accurate. A preliminary performance evaluation in large-scale systems for which the semi-definite relaxation constantly yields non rank-1 solutions is presented.Comment: submitted to IEEE SPAWC 2015. arXiv admin note: substantial text overlap with arXiv:1406.755

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    Frame Based Precoding in Satellite Communications: A Multicast Approach

    Get PDF
    In the present work, a multibeam satellite that employs aggressive frequency reuse towards increasing the offered throughput is considered. Focusing on the forward link, the goal is to employ multi-antenna signal processing techniques, namely linear precoding, to manage the inter-beam interferences. In this context, fundamental practical limitations, namely the rigid framing structure of satellite communication standards and the on-board per-antenna power constraints, are herein considered. Therefore, the concept of optimal frame based precoding under per-antenna constraints, is discussed. This consists in precoding the transmit signals without changing the underlying framing structure of the communication standard. In the present work, the connection of the frame based precoding problem with the generic signal processing problem of conveying independent sets of common data to distinct groups of users is established. This model is known as physical layer multicasting to multiple co-channel groups. Building on recent results, the weighted fair per-antenna power constrained multigroup multicast precoders are employed for frame based precoding. The throughput performance of these solutions is compared to multicast aware heuristic precoding methods over a realistic multibeam satellite scenario. Consequently, the gains of the proposed approach are quantified via extensive numerical results.Comment: Accepted for presentation at the IEEE ASMS 201

    A Rate-Splitting Strategy for Max-Min Fair Multigroup Multicasting

    Full text link
    We consider the problem of transmit beamforming to multiple cochannel multicast groups. The conventional approach is to beamform a designated data stream to each group, while treating potential inter-group interference as noise at the receivers. In overloaded systems where the number of transmit antennas is insufficient to perform interference nulling, we show that inter-group interference dominates at high SNRs, leading to a saturating max-min fair performance. We propose a rather unconventional approach to cope with this issue based on the concept of Rate-Splitting (RS). In particular, part of the interference is broadcasted to all groups such that it is decoded and canceled before the designated beams are decoded. We show that the RS strategy achieves significant performance gains over the conventional multigroup multicast beamforming strategy.Comment: accepted to the 17th IEEE International workshop on Signal Processing advances in Wireless Communications (SPAWC 2016
    • …
    corecore