4,239 research outputs found

    A Study of AI Population Dynamics with Million-agent Reinforcement Learning

    Get PDF
    We conduct an empirical study on discovering the ordered collective dynamics obtained by a population of intelligence agents, driven by million-agent reinforcement learning. Our intention is to put intelligent agents into a simulated natural context and verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-scale predator-prey world, where the laws of the world are designed by only the findings or logical equivalence that have been discovered in nature. We endow the agents with the intelligence based on deep reinforcement learning (DRL). In order to scale the population size up to millions agents, a large-scale DRL training platform with redesigned experience buffer is proposed. Our results show that the population dynamics of AI agents, driven only by each agent's individual self-interest, reveals an ordered pattern that is similar to the Lotka-Volterra model studied in population biology. We further discover the emergent behaviors of collective adaptations in studying how the agents' grouping behaviors will change with the environmental resources. Both of the two findings could be explained by the self-organization theory in nature.Comment: Full version of the paper presented at AAMAS 2018 (International Conference on Autonomous Agents and Multiagent Systems

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation
    corecore