1,465 research outputs found

    A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks

    Get PDF
    The idea of Cognitive Radio (CR) is to share the spectrum between a user called primary, and a user called secondary. Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm in cognitive radio that allows secondary users to access the abundant spectrum holes in the licensed spectrum bands. DSA is an auspicious technology to alleviate the spectrum scarcity problem and increase spectrum utilization. While DSA has attracted many research efforts recently, in this paper, a survey of spectrum access techniques using cooperation and competition to solve the problem of spectrum allocation in cognitive radio networks is presented

    An agent based architecture for cognitive spectrum management

    Full text link
    In the recent years, wireless technologies and devices have progressed dramatically that has augmented the demand for electromagnetic spectrum. Some research work showed that spectrum access and provision to user is not possible due to shortage of spectrum but federal communication commission refused to accept this theory and indicated that the spectrum is available since most of the frequency bands are underutilized. In order to allow the use of these frequency bands without interference, cognitive radio was proposed that characterizes the growing intelligence of radio systems can adapt to the radio environment, allowing opportunistic usage and sharing with the existing uses of spectrum. To take this concept a step further, we propose to use intelligent agent for spectrum management in the context of cognitive radio in this paper. In our proposed architecture, agents are embedded in the radio devices that coordinate their operations to benefit from network and avoid interference with the primary user. Agents carry a set of modules to gather information about the terminal status and the radio environment and act accordingly to the constraints of the user application

    Application of reinforcement learning for security enhancement in cognitive radio networks

    Get PDF
    Cognitive radio network (CRN) enables unlicensed users (or secondary users, SUs) to sense for and opportunistically operate in underutilized licensed channels, which are owned by the licensed users (or primary users, PUs). Cognitive radio network (CRN) has been regarded as the next-generation wireless network centered on the application of artificial intelligence, which helps the SUs to learn about, as well as to adaptively and dynamically reconfigure its operating parameters, including the sensing and transmission channels, for network performance enhancement. This motivates the use of artificial intelligence to enhance security schemes for CRNs. Provisioning security in CRNs is challenging since existing techniques, such as entity authentication, are not feasible in the dynamic environment that CRN presents since they require pre-registration. In addition these techniques cannot prevent an authenticated node from acting maliciously. In this article, we advocate the use of reinforcement learning (RL) to achieve optimal or near-optimal solutions for security enhancement through the detection of various malicious nodes and their attacks in CRNs. RL, which is an artificial intelligence technique, has the ability to learn new attacks and to detect previously learned ones. RL has been perceived as a promising approach to enhance the overall security aspect of CRNs. RL, which has been applied to address the dynamic aspect of security schemes in other wireless networks, such as wireless sensor networks and wireless mesh networks can be leveraged to design security schemes in CRNs. We believe that these RL solutions will complement and enhance existing security solutions applied to CRN To the best of our knowledge, this is the first survey article that focuses on the use of RL-based techniques for security enhancement in CRNs
    corecore