5 research outputs found

    On Learning Vector Representations in Hierarchical Label Spaces

    Full text link
    An important problem in multi-label classification is to capture label patterns or underlying structures that have an impact on such patterns. This paper addresses one such problem, namely how to exploit hierarchical structures over labels. We present a novel method to learn vector representations of a label space given a hierarchy of labels and label co-occurrence patterns. Our experimental results demonstrate qualitatively that the proposed method is able to learn regularities among labels by exploiting a label hierarchy as well as label co-occurrences. It highlights the importance of the hierarchical information in order to obtain regularities which facilitate analogical reasoning over a label space. We also experimentally illustrate the dependency of the learned representations on the label hierarchy

    Coherent Hierarchical Multi-Label Classification Networks

    Full text link
    Hierarchical multi-label classification (HMC) is a challenging classification task extending standard multi-label classification problems by imposing a hierarchy constraint on the classes. In this paper, we propose C-HMCNN(h), a novel approach for HMC problems, which, given a network h for the underlying multi-label classification problem, exploits the hierarchy information in order to produce predictions coherent with the constraint and improve performance. We conduct an extensive experimental analysis showing the superior performance of C-HMCNN(h) when compared to state-of-the-art models.Comment: Neural Information Processing Systems 202

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    HIERARCHICAL ENSEMBLE METHODS FOR ONTOLOGY-BASED PREDICTIONS IN COMPUTATIONAL BIOLOGY

    Get PDF
    L'annotazione standardizzata di entit\ue0 biologiche, quali geni e proteine, ha fortemente promosso l'organizzazione dei concetti biologici in vocabolari controllati, cio\ue8 ontologie che consentono di indicizzare in modo coerente le relazioni tra le diverse classi funzionali organizzate secondo una gerarchia predefinita. Esempi di ontologie biologiche in cui i termini funzionali sono strutturati secondo un grafo diretto aciclico (DAG) sono la Gene Ontology (GO) e la Human Phenotype Ontology (HPO). Tali tassonomie gerarchiche vengono utilizzate dalla comunit\ue0 scientifica rispettivamente per sistematizzare le funzioni proteiche di tutti gli organismi viventi dagli Archea ai Metazoa e per categorizzare le anomalie fenotipiche associate a malattie umane. Tali bio-ontologie, offrendo uno spazio di classificazione ben definito, hanno favorito lo sviluppo di metodi di apprendimento per la predizione automatizzata della funzione delle proteine e delle associazioni gene-fenotipo patologico nell'uomo. L'obiettivo di tali metodologie consiste nell'\u201cindirizzare\u201d la ricerca \u201cin-vitro\u201d per favorire una riduzione delle spese ed un uso pi\uf9 efficace dei fondi destinati alla ricerca. Dal punto di vista dell'apprendimento automatico il problema della predizione della funzione delle proteine o delle associazioni gene-fenotipo patologico nell'uomo pu\uf2 essere modellato come un problema di classificazione multi-etichetta strutturato, in cui le predizioni associate ad ogni esempio (i.e., gene o proteina) sono sotto-grafi organizzati secondo una determinata struttura (albero o DAG). A causa della complessit\ue0 del problema di classificazione, ad oggi l'approccio di predizione pi\uf9 comunemente utilizzato \ue8 quello \u201cflat\u201d, che consiste nell'addestrare un classificatore separatamente per ogni termine dell'ontologia senza considerare le relazioni gerarchiche esistenti tra le classi funzionali. L'utilizzo di questo approccio \ue8 giustificato non soltanto dal fatto di ridurre la complessit\ue0 computazionale del problema di apprendimento, ma anche dalla natura \u201cinstabile\u201d dei termini che compongono l'ontologia stessa. Infatti tali termini vengono aggiornati mensilmente mediante un processo curato da esperti che si basa sia sulla letteratura scientifica biomedica che su dati sperimentali ottenuti da esperimenti eseguiti \u201cin-vitro\u201d o \u201cin-silico\u201d. In questo contesto, in letteratura sono stati proposti due classi generali di classificatori. Da una parte, si collocano i metodi di apprendimento automatico che predicono le classi funzionali in modo \u201cflat\u201d, ossia senza esplorare la struttura intrinseca dello spazio delle annotazioni. Dall'altra parte, gli approcci gerarchici che, considerando esplicitamente le relazioni gerarchiche fra i termini funzionali dell'ontologia, garantiscono che le annotazioni predette rispettino la \u201ctrue-path-rule\u201d, la regola biologica che governa le ontologie. Nell'ambito dei metodi gerarchici, in letteratura sono stati proposti due diverse categorie di approcci. La prima si basa su metodi kernelizzati per predizioni con output strutturato, mentre la seconda su metodi di ensemble gerarchici. Entrambi questi metodi presentano alcuni svantaggi. I primi sono computazionalmente pesanti e non scalano bene se applicati ad ontologie biologiche. I secondi sono stati per la maggior parte concepiti per tassonomie strutturate ad albero, e quei pochi approcci specificatamente progettati per ontologie strutturate secondo un DAG, sono nella maggioranza dei casi incapaci di migliorare le performance di predizione dei metodi \u201cflat\u201d. Per superare queste limitazioni, nel presente lavoro di tesi si sono proposti dei nuovi metodi di ensemble gerarchici capaci di fornire predizioni consistenti con la struttura gerarchica dell'ontologia. Tali approcci, da un lato estendono precedenti metodi originariamente sviluppati per ontologie strutturate ad albero ad ontologie organizzate secondo un DAG e dall'altro migliorano significativamente le predizioni rispetto all'approccio \u201cflat\u201d indipendentemente dalla scelta del tipo di classificatore utilizzato. Nella loro forma pi\uf9 generale, gli approcci di ensemble gerarchici sono altamente modulari, nel senso che adottano una strategia di apprendimento a due passi. Nel primo passo, le classi funzionali dell'ontologia vengono apprese in modo indipendente l'una dall'altra, mentre nel secondo passo le predizioni \u201cflat\u201d vengono combinate opportunamente tenendo conto delle gerarchia fra le classi ontologiche. I principali contributi introdotti nella presente tesi sono sia metodologici che sperimentali. Da un punto di vista metodologico, sono stati proposti i seguenti nuovi metodi di ensemble gerarchici: a) HTD-DAG (Hierarchical Top-Down per tassonomie DAG strutturate); b) TPR-DAG (True-Path-Rule per DAG) con diverse varianti algoritmiche; c) ISO-TPR (True-Path-Rule con Regressione Isotonica), un nuovo algoritmo gerarchico che combina la True-Path-Rule con metodi di regressione isotonica. Per tutti i metodi di ensemble gerarchici \ue8 stato dimostrato in modo formale la coerenza delle predizioni, cio\ue8 \ue8 stato provato come gli approcci proposti sono in grado di fornire predizioni che rispettano le relazioni gerarchiche fra le classi. Da un punto di vista sperimentale, risultati a livello dell'intero genoma di organismi modello e dell'uomo ed a livello della totalit\ue0 delle classi incluse nelle ontologie biologiche mostrano che gli approcci metodologici proposti: a) sono competitivi con gli algoritmi di predizione output strutturata allo stato dell'arte; b) sono in grado di migliorare i classificatori \u201cflat\u201d, a patto che le predizioni fornite dal classificatore non siano casuali; c) sono in grado di predire nuove associazioni tra geni umani e fenotipi patologici, un passo cruciale per la scoperta di nuovi geni associati a malattie genetiche umane e al cancro; d) scalano bene su dataset costituiti da decina di migliaia di esempi (i.e., proteine o geni) e su tassonomie costituite da migliaia di classi funzionali. Infine, i metodi proposti in questa tesi sono stati implementati in una libreria software scritta in linguaggio R, HEMDAG (Hierarchical Ensemble Methods per DAG), che \ue8 pubblica, liberamente scaricabile e disponibile per i sistemi operativi Linux, Windows e Macintosh.The standardized annotation of biomedical related objects, often organized in dedicated catalogues, strongly promoted the organization of biological concepts into controlled vocabularies, i.e. ontologies by which related terms of the underlying biological domain are structured according to a predefined hierarchy. Indeed large ontologies have been developed by the scientific community to structure and organize the gene and protein taxonomy of all the living organisms from Archea to Metazoa, i.e. the Gene Ontology, or human specific ontologies, such as the Human Phenotype Ontology, that provides a structured taxonomy of the abnormal human phenotypes associated with diseases. These ontologies, offering a coded and well-defined classification space for biological entities such as genes and proteins, favor the development of machine learning methods able to predict features of biological objects like the association between a human gene and a disease, with the aim to drive wet lab research allowing a reduction of the costs and a more effective usage of the available research funds. Despite the soundness of the aforementioned objectives, the resulting multi-label classification problems raise so complex machine learning issues that until recently the far common approach was the \u201cflat\u201d prediction, i.e. simply training a classifier for each term in the controlled vocabulary and ignoring the relationships between terms. This approach was not only justified by the need to reduce the computational complexity of the learning task, but also by the somewhat \u201cunstable\u201d nature of the terms composing the controlled vocabularies, because they were (and are) updated on a monthly basis in a process performed by expert curators and based on biomedical literature, and wet and in-silico experiments. In this context, two main general classes of classifiers have been proposed in literature. On the one hand, \u201chierarchy-unaware\u201d learning methods predict labels in a \u201cflat\u201d way without exploiting the inherent structure of the annotation space. On the other hand, \u201chierarchy-aware\u201d learning methods can improve the accuracy and the precision of the predictions by considering the hierarchical relationships between ontology terms. Moreover these methods can guarantee the consistency of the predicted labels according to the \u201ctrue path rule\u201d, that is the biological and logical rule that governs the internal coherence of biological ontologies. To properly handle the hierarchical relationships linking the ontology terms, two main classes of structured output methods have been proposed in literature: the first one is based on kernelized methods for structured output spaces, the second on hierarchical ensemble methods for ontology-based predictions. However both these approaches suffer of significant drawbacks. The kernel-based methods for structured output space are computationally intensive and do not scale well when applied to complex multi-label bio-ontologies. Most hierarchical ensemble methods have been conceived for tree-structured taxonomies and the few ones specifically developed for the prediction in DAG-structured output spaces are, in most cases, unable to improve prediction performances over flat methods. To overcome these limitations, in this thesis novel \u201contology-aware\u201d ensemble methods have been developed, able to handle DAG-structured ontologies, leveraging previous results obtained with \u201ctrue-path-rule\u201d-based hierarchical learning algorithms. These methods are highly modular in the sense that they adopt a \u201ctwo-step\u201d learning strategy: in the first step they learn separately each term of the ontology using flat methods, and in the second they properly combine the flat predictions according to the hierarchy of the classes. The main contributions of this thesis are both methodological and experimental. From a methodological standpoint, novel hierarchical ensemble methods are proposed, including: a) HTD (Hierarchical Top-Down algorithm for DAG structured ontologies); b) TPR-DAG (True Path Rule ensemble for DAG) with several variants; c) ISO-TPR, a novel ensemble method that combines the True Path Rule approach with Isotonic Regression. For all these methods a formal proof of their consistency, i.e. the guarantee of providing predictions that \u201crespect\u201d the hierarchical relationships between classes, is provided. From an experimental standpoint, extensive genome and ontology-wide results show that the proposed methods: a) are competitive with state-of-the-art prediction algorithms; b) are able to improve flat machine learning classifiers, if the base learners can provide non random predictions; c) are able to predict new associations between genes and human abnormal phenotypes, a crucial step to discover novel genes associated with human diseases ranging from genetic disorders to cancer; d) scale nicely with large datasets and bio-ontologies. Finally HEMDAG, a novel R library implementing the proposed hierarchical ensemble methods has been developed and publicly delivered
    corecore