3 research outputs found

    Multi-view representation learning via gcca for multimodal analysis of Parkinson's disease

    Get PDF
    Information from different bio-signals such as speech, handwriting, and gait have been used to monitor the state of Parkinson's disease (PD) patients, however, all the multimodal bio-signals may not always be available. We propose a method based on multi-view representation learning via generalized canonical correlation analysis (GCCA) for learning a representation of features extracted from handwriting and gait that can be used as a complement to speech-based features. Three different problems are addressed: classification of PD patients vs. healthy controls, prediction of the neurological state of PD patients according to the UPDRS score, and the prediction of a modified version of the Frenchay dysarthria assessment (m-FDA). According to the results, the proposed approach is suitable to improve the results in the addressed problems, specially in the prediction of the UPDRS, and m-FDA scores

    Parkinson's Disease Classification and Clinical Score Regression via United Embedding and Sparse Learning From Longitudinal Data

    Get PDF
    Parkinson's disease (PD) is known as an irreversible neurodegenerative disease that mainly affects the patient's motor system. Early classification and regression of PD are essential to slow down this degenerative process from its onset. In this article, a novel adaptive unsupervised feature selection approach is proposed by exploiting manifold learning from longitudinal multimodal data. Classification and clinical score prediction are performed jointly to facilitate early PD diagnosis. Specifically, the proposed approach performs united embedding and sparse regression, which can determine the similarity matrices and discriminative features adaptively. Meanwhile, we constrain the similarity matrix among subjects and exploit the l2,p norm to conduct sparse adaptive control for obtaining the intrinsic information of the multimodal data structure. An effective iterative optimization algorithm is proposed to solve this problem. We perform abundant experiments on the Parkinson's Progression Markers Initiative (PPMI) data set to verify the validity of the proposed approach. The results show that our approach boosts the performance on the classification and clinical score regression of longitudinal data and surpasses the state-of-the-art approaches
    corecore