14 research outputs found

    Clustering Mixed Numeric and Categorical Data with Cuckoo Search

    Get PDF

    Decoupled Contrastive Multi-view Clustering with High-order Random Walks

    Full text link
    In recent, some robust contrastive multi-view clustering (MvC) methods have been proposed, which construct data pairs from neighborhoods to alleviate the false negative issue, i.e., some intra-cluster samples are wrongly treated as negative pairs. Although promising performance has been achieved by these methods, the false negative issue is still far from addressed and the false positive issue emerges because all in- and out-of-neighborhood samples are simply treated as positive and negative, respectively. To address the issues, we propose a novel robust method, dubbed decoupled contrastive multi-view clustering with high-order random walks (DIVIDE). In brief, DIVIDE leverages random walks to progressively identify data pairs in a global instead of local manner. As a result, DIVIDE could identify in-neighborhood negatives and out-of-neighborhood positives. Moreover, DIVIDE embraces a novel MvC architecture to perform inter- and intra-view contrastive learning in different embedding spaces, thus boosting clustering performance and embracing the robustness against missing views. To verify the efficacy of DIVIDE, we carry out extensive experiments on four benchmark datasets comparing with nine state-of-the-art MvC methods in both complete and incomplete MvC settings

    Efficient and Effective Deep Multi-view Subspace Clustering

    Full text link
    Recent multi-view subspace clustering achieves impressive results utilizing deep networks, where the self-expressive correlation is typically modeled by a fully connected (FC) layer. However, they still suffer from two limitations. i) The parameter scale of the FC layer is quadratic to sample numbers, resulting in high time and memory costs that significantly degrade their feasibility in large-scale datasets. ii) It is under-explored to extract a unified representation that simultaneously satisfies minimal sufficiency and discriminability. To this end, we propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E2^2MVSC). Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency. Most importantly, the proposed method devises a multi-type auto-encoder to explicitly decouple consistent, complementary, and superfluous information from every view, which is supervised by a soft clustering assignment similarity constraint. Following information bottleneck theory and the maximal coding rate reduction principle, a sufficient yet minimal unified representation can be obtained, as well as pursuing intra-cluster aggregation and inter-cluster separability within it. Extensive experiments show that E2^2MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets

    SCOREH+: A High-Order Node Proximity Spectral Clustering on Ratios-of-Eigenvectors Algorithm for Community Detection

    Full text link
    The research on complex networks has achieved significant progress in revealing the mesoscopic features of networks. Community detection is an important aspect of understanding real-world complex systems. We present in this paper a High-order node proximity Spectral Clustering on Ratios-of-Eigenvectors (SCOREH+) algorithm for locating communities in complex networks. The algorithm improves SCORE and SCORE+ and preserves high-order transitivity information of the network affinity matrix. We optimize the high-order proximity matrix from the initial affinity matrix using the Radial Basis Functions (RBFs) and Katz index. In addition to the optimization of the Laplacian matrix, we implement a procedure that joins an additional eigenvector (the (k+1)th(k+1)^{th} leading eigenvector) to the spectrum domain for clustering if the network is considered to be a "weak signal" graph. The algorithm has been successfully applied to both real-world and synthetic data sets. The proposed algorithm is compared with state-of-art algorithms, such as ASE, Louvain, Fast-Greedy, Spectral Clustering (SC), SCORE, and SCORE+. To demonstrate the high efficacy of the proposed method, we conducted comparison experiments on eleven real-world networks and a number of synthetic networks with noise. The experimental results in most of these networks demonstrate that SCOREH+ outperforms the baseline methods. Moreover, by tuning the RBFs and their shaping parameters, we may generate state-of-the-art community structures on all real-world networks and even on noisy synthetic networks

    To Compress or Not to Compress -- Self-Supervised Learning and Information Theory: A Review

    Full text link
    Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the \textit{self-supervised information-theoretic learning problem}. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks

    Agglomerative Neural Networks for Multiview Clustering

    Full text link
    Conventional multi-view clustering methods seek for a view consensus through minimizing the pairwise discrepancy between the consensus and subviews. However, the pairwise comparison cannot portray the inter-view relationship precisely if some of the subviews can be further agglomerated. To address the above challenge, we propose the agglomerative analysis to approximate the optimal consensus view, thereby describing the subview relationship within a view structure. We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly while avoiding a dedicated postprocessing step (e.g., using K-means). We further extend ANN with learnable data space to handle data of complex scenarios. Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN. We further demonstrate ANN's capability in analyzing complex view structures and extensibility in our case study and explain its robustness and effectiveness of data-driven modifications
    corecore