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ABSTRACT Clustering analysis, as an important technique in data mining, aims to identify the nature 
groups or clusters of data objects in the attribute space. Data objects in real-world applications are 
commonly described by both numeric and categorical attributes. In this research, considering that the 
partitional clustering algorithms designed for this type of mixed data are prone to get trapped into local 
optima and the cuckoo search approach is efficient in solving global optimization problems, we propose 
CCS-K-Prototypes, a novel partitional Clustering algorithm based on Cuckoo Search and K-Prototypes, for 
clustering mixed numeric and categorical data. To deal with different types of attributes, we develop a 
novel representation for candidate solutions, and suggest two formulas for the cuckoo to search for the 
potential solution around the existing solutions or in the entire attribute space. Finally, the performance of 
the proposed algorithm is assessed by a series of experiments on five benchmark datasets. 

INDEX TERMS Data Clustering, cuckoo search, mixed data, numeric and categorical attributes

I. INTRODUCTION 
Clustering analysis aims to detect the nature groups or 
clusters of data objects in attributes space, and it is one of 
the most important techniques in data mining [1], [2]. 
Clustering algorithms are used in a wide range of fields 
such as social media analysis [3], information retrieval [4], 
[5], image analysis [6], privacy preserving [7], text analysis 
[8], and bioinformatics [9], [10]. The goal of clustering is to 
group data objects into clusters such that the data objects in 
the same cluster are as similar as possible and the ones from 
different clusters are as dissimilar as possible [11]. 
Clustering algorithms can be considered falling into two 
types: hierarchical and partitional [2]. In hierarchical 
clustering algorithms, data objects are distributed into a 
dendrogram of the nested partitions according to a divisive 
or agglomerative strategy [12]. Whereas in partitional 
clustering algorithms, data objects are divided into a given 

number of clusters by minimizing an objective cost 
function.  

The k-means algorithm is a simple and popular centre-
based partitional clustering algorithm [13]. Considering the 
uncertainty of data objects, Bezdek, Ehrlich, and Full 
introduced the fuzzy k-means algorithm [14]. The k-means 
algorithm and its fuzzy version are originally designed for 
the datasets with numeric attributes. However, in many real-
world applications, data objects are described by both 
numeric and categorical attributes. To deal with this type of 
data, the k-prototypes algorithm was introduced by Huang 
[15]. Considering the fuzzy nature of the data objects 
amongst clusters, the fuzzy k-prototypes algorithm was 
introduced by Bezdek et al [16]. In addition, several 
extensions of the k-prototypes algorithms were proposed by 
taking the significance of attribute and the representation of 
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cluster’s centre into account  [11], [17], [18], [19]. Lam, Wei, 
and Wunsch proposed the approach UFLA, which is based 
on the unsupervised feature learning (UFL) and fuzzy 
adaptive resonance theory (ART) [20]. Based on the density 
clustering, Chen and He introduced the algorithm ACC-
FSFDP, which is a self-adaptive peak density clustering 
algorithm [21].  

However, one issue associated with many existing 
clustering algorithms, including k-prototypes algorithms, is 
that they are prone to get trapped into local optima. Over the 
past decades, meta-heuristic algorithms have been widely 
used to perform global search on complex search space of 
many problems. Holland et al proposed the well-known 
genetic algorithm, which models the process of the biological 
evolution on the basis of Charles Darwin’s theory of natural 
selection [22]. Kennedy and Eberhart developed the particle 
swarm optimization (PSO) on the basis of the swarm 
behaviour such as fish and bird schooling [22]. Lucic and 
Teodorović presented a bee colony optimization approach, 
which is inspired by the foraging behaviour of bee swarm in 
the real world [23]. 

Inspired by the brood parasitic behaviour of some cuckoo 
species, Yang and Deb proposed the cuckoo search (CS) 
algorithm [24]-[26]. The CS is enhanced by the Lévy flight 
behaviour of some birds and fruit flies, and has good global 
convergence property [26]. Yang and Deb also developed the 
multiobjective version of the cuckoo search [27]. 
Marichelvam, Prabaharan, and Yang developed an improved 
cuckoo search approach for flow shop scheduling problem 
[28]. Adnan, Razzaque et al introduced the cuckoo search to 
deal with the cluster arrangement of the wireless sensor 
network [29]. Goel, Sharma, and Bedi proposed a cuckoo 
search clustering algorithm, which used Davies-Bouldin 
index as fitness function [30]. In the comparative study, 
Senthilnath, Das, and Omkar et al pointed out that the 
cuckoo search was efficient on clustering problems [31]. 
Based on the cuckoo search strategy and k-modes algorithm, 
Lakshmi, Visalakshi, and  Shanthi et al developed the 
algorithm Cuckoo-K-Modes for dealing with the categorical 
data [32].  

In real-world applications, the collected data with both 
numeric and categorical attributes are ubiquitous. Based on 
the cuckoo search strategy and k-prototypes algorithm, 
Lakshmi, Visalakshi, and Shanthi introduced the cuckoo 
search based k-prototype algorithm [33]. In Lakshmi et al.’s 
algorithm, the cluster centres are initialized by the cuckoo 
search and then updated by the k-prototypes algorithm. In 
this research we aim to develop a novel CS-based clustering 
algorithm for the mixed data with both numeric and 
categorical attributes. We first introduce a novel 
representation for candidate solutions, and then integrate this 
representation with the cuckoo search framework to cluster 
mixed data. Finally, we analyse the time and space 
complexity of the proposed approach, and test it on selected 
datasets. The differences between our proposed algorithm 

and the Lakshmi et al.’s algorithm are summarized as 
follows: firstly, we give the representation for candidate 
solutions; secondly, we give the calculation method for the 
fitness value of a candidate solution; thirdly, we give the 
calculation methods of the candidate solution for local and 
global search, respectively; fourthly, the process of the 
CCS-K-Prototypes algorithm is different from the Lakshmi 
et al.’s algorithm.  

The rest of this paper is organized as follows: we first 
briefly review some related work in Section II. Then, we 
present the proposed approach in Section III, and report the 
experimental results which demonstrate the advantages of the 
proposed method in Section IV. Finally, we conclude this 
paper and explore the future directions in Section V. 

II.  MOTIVATION AND RELATED WORK 
In this section, we first present the notations used 
throughout this paper, the clustering task, the k-prototypes 
algorithm, and then depict the idea of cuckoo search 
strategy. 

A.  NOTATIONS 
Let 1 2{ , ,..., }nX X X X  be a dataset consisting of n  data 
objects and iX  (1 )i n   be a data object with m  
attributes 1 2, ,..., mA A A . Then all possible values of an 
attribute jA  form the domain of values indicated by 

( )jDom A . The domain of values associated with mixed 
data has two types: numeric and categorical. The numeric 
domain is represented by continuous real numbers. 
Whereas the categorical domain is represented by a finite 
set without any natural ordering (such as gender, colour), 
which is usually denoted by 1 2( ) { , ,..., }t

j j j jDom A a a a , 
where t  is the number of category values of the categorical 
attribute jA  in the dataset X . A data object iX  is logically 
represented as a conjunction of attribute-value pairs 

1 1 2 2[ ] [ ] ... [ ] ... [ ]i i j ij m imA x A x A x A x         , 
where ( )ij jx Dom A  for 1 j m  . For ease of description, 

we represent iX  as a vector 1 2[ , ,..., ]i i imx x x . We assume 
that every data object has exactly m  attributes for the 
datasets considered in this paper. 

B. THE CLUSTERING TASK 
Clustering is the process of identifying the nature groups or 
clusters of data objects [2]. Let 1 2{ , ,..., }nX x x x  denote a 
dataset with n  data objects and ix  be a data object 
described by m  attributes. The aim of clustering is to 
determine a partition 1 2{C ,C ,...,C }kP   which is subject 
to the following constraints: : ,jj C     

 : i ji j C C    , and 
1

k
ii

C X


 . After partition, the 
data objects in the same cluster are as similar as possible 
whereas the ones from different clusters are as dissimilar as 
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possible. For achieving good clustering results, one popular 
way is to minimize the following objective function:  

                     
1 1

( , ) ( , )
n k

ij i j
i j

E U z u d x z
 

 ,                       (1) 

where z  is the set of cluster centres and jz  is the centre of 
Cluster j , ix  is the data object i , and ( , )i jd x z  is the 
distance between the data object ix  and cluster centre jz , 
and U  is the partition matrix: if a data object i  belongs to 
Cluster j , 1iju  ; otherwise 0iju  . Given all cluster 
centres z , iju  is calculated as follows: 

                  {1,2,..., }1  if =argmin (x , z ),  
0  otherwise,

t k i t
ij

j d
u  


              (2) 

where {1, 2,..., }i n  and {1, 2,..., }j k .  

C. THE K-PROTOTYPES ALGORITHM 
The k-prototypes algorithm was first introduced by Huang 
for clustering the data with both numeric and categorical 
attributes [15]. This algorithm aims to partition the dataset 
X  into k  clusters by minimizing the following cost 
function: 

                      
1 1

( , Z) ( , Z )
k n

il i l
l i

E U u d x
 

 ,                        (3) 

where lZ  is the prototype of the cluster l ;  (0 1)il ilu u   
is an element of the partition matrix n kU  ; and ( , Z )i ld x  is 
the dissimilarity measure which is given as follows: 

                        
1

( , Z ) ( , z )
m

i l ij lj
j

d x d x


 .                             (4) 

In (4), ( , z )ij ljd x  is formulated as: 
     

2( )    if the th attribute is numeric, 
( , z )

( , z ) if the th attribute is categorical,
ij lj

ij lj
l ij lj

x z l
d x

x l 

  


(5) 

where ( , ) 0p q   if the values of p   and q  are the same; 
( , ) 1p q   if the values of p  and q  are different; l  is a 

weight for categorical attributes in the cluster l . If the jth 
attribute is the numeric attribute, ljz  is the mean of the thj  
numeric attribute in the cluster l ; if the jth attribute is the 
categorical one, ljz  is the mode of the thj  categorical 
attribute in the cluster l . The procedure of the k-prototypes 
algorithm is depicted as follows:  

Step 1. Randomly select k  data objects from the 
dataset X  as the initial prototypes of clusters. 

Step 2. Allocate each data object in the dataset X  to 
the cluster with its nearest prototype according to 
(4). Update the prototype of cluster after each 
allocation. 

Step 3. Once all data objects have been allocated, re-
evaluate the similarity of data objects against the 
current prototypes. If it is found that a data object’s 

nearest prototype locates in another cluster rather 
than the current one, reallocate this data object to 
that cluster and update the prototypes for both 
clusters. 

Step 4. If no data objects have changed clusters after a 
full circle test of X , terminate the algorithm; 
otherwise, go to Step 3. 

D. THE CUCKOO SEARCH STRATEGY 
Cuckoos are the interesting birds with charming sounds and 
aggressive breed behaviour. Many of them lay their eggs 
into the nest of the other host birds. If a host bird finds the 
alien eggs, it will either cast these eggs outside the nest or 
quit its nest and builds a new one somewhere else. The eggs 
of cuckoo generally hatch slightly earlier than the eggs of 
the host birds. The cuckoo chick will push the host eggs out 
of the nest after it hatched (see [24] for more details). 
Inspired by these interesting breeding behaviour, Yang and 
Deb introduced the cuckoo search strategy [24]. This 
strategy has three idealized rules: 1) the cuckoo lays one 
egg at a time, and puts its egg into a randomly selected nest; 
2) the nests, which contain high quality eggs, will pass to 
the next generations; 3) the number of obtainable host nests 
is fixed, and the cuckoo’s egg is perceived by the host bird 
with a probability [0,  1]apro  . Given the objective 
function 1( ),  =( , ..., )T

df x x x x , the process of cuckoo search 
is briefly given as follows: 
 
Initialization: Initialize the population of n  host nests 

 ( 1, 2,  ...,  )ix i n  
While (the stop criterion is not met) 

Get a cuckoo ix  in a random way by Lévy flights, and 
calculate its quality or fitness iF ; 

Pick up a nest jx  from the population randomly, and 
evaluate its quality or fitness jF ; 

If ( i jF F ) 
Replace the nest jx  with the new nest ix ; 

End if 
Abandon a fraction ( apro ) of the worse nests, and 

generate new ones by Lévy flights; 
Keep the nests with the highest quality; 
Rank the nests and keep the nest with the highest quality 
or fitness; 

End while 
Output the best solution; 

 
In the process of cuckoo search, the stop criterion will be 
either the number of max generations or other termination 
criteria such as the best clustering solution does not 
improve for a given number of generations. The Lévy flight 
is a random walk in essence, and its step length obeys the 
Lévy distribution.  
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III. THE PROPOSED METHOD 

In this section, we first describe our proposed CCS-K-
Prototypes (Clustering based on Cuckoo Search and K-
Prototypes) clustering approach, and we then give an 
example of the CCS-K-Prototypes algorithm. Finally, we 
analyse the time and space complexity of the CCS-K-
Prototypes algorithm. 

A. THE PROPOSED APPROACH 
In this section, we proposed a novel clustering algorithm on 
the basis of the cuckoo search strategy and the k-prototypes 
algorithm. In the search process of cuckoo, the egg in a nest 
represents a candidate solution. As aforementioned, one 
nest only contains one egg, and each cuckoo lays one egg at 
a time. Thus, a cuckoo and a nest correspond to a candidate 
solution. In our algorithm, the nest, cuckoo, and the egg 
have the same meaning. In centre-based clustering 
algorithms, the clustering results depend on the cluster 
centres: the clustering results are determined once the 
cluster centres are obtained. Therefore, the clustering task 
can be seen as the process of searching for good cluster 
centres, and the set of cluster centres represents a candidate 
solution. Suppose the dataset with n  data objects has k  
clusters, the set of cluster centres 1 2{z ,z ,..., z }i i i ikz   
represents a candidate solution. For the data with both 
numeric and categorical attributes, the prototype, which is 
the combination of the mean and mode, is used to represent 
the cluster’s centre. In such clustering tasks, the fitness 
value of a candidate solution 1 2{z ,z ,..., z }i i i ikz   is given 
as follows: 

                      
1 1

( ) ( , )
n k

i ej e ij
e j

F z u d x z
 

 ,                          (6) 

where eju  is the element of the partition matrix U  which is 
determined according to the cluster centres 

1 2{z ,z ,..., z }i i i ikz  . Given the cluster centre iz , eju  is 
calculated as follows: 

                 {1,2,..., }1  if =argmin ( , ),  
0  otherwise,

t k e it
ej

j d x z
u  


             (7) 

where  {1, 2,..., },  and  {1,2,..., }e n j k  . In (6), the 
dissimilarity measure ( , )e ijd x z  is formulated as: 

                             
1

( , ) ( , )
m

e ij es ijs
s

d x z x z


 ,                       (8) 

where ( , )es ijsx z  is given by: 

   

2

if the th attribute is numeric, 
max min( , )

( , )      if the th attribute is categorical,

es ijs

s ses ijs

s es ijs

x z
s

x z

x z s



 

  
    



(9) 

where xes is the value of the sth attribute of a data object e , 
s  is the weight of the sth categorical attribute in the 

cluster j , and max / mins s  is the maximum/minimum 
value of the sth attribute in the dataset X . If the sth 

attribute is a numeric attribute, ijsz  is the mean of the ths  
numeric attribute in the cluster j ; if the sth attribute is a 
categorical one, ijsz  is the most frequent value, i.e., the 
mode, of the ths  categorical attribute in the cluster j . 

For a cuckoo i , the new solution 1t
iz   is generated from 

its current solution zt
i  and the best solution zt

best , which is 
given as follows: 
                     1 (z , z )t t t

i i bestz getNextSolution  .                  (10) 
Let 1t

ijsz  , _
t
best jsz  be the value of the sth attribute of the jth 

cluster centre of the candidate solution 1t
iz  , and zt

best , 
respectively. If the sth attribute is a categorical attribute, 

1t
ijsz   is the categorical value, which is selected randomly 

from the set of values Vals= { _,t t
ijs best jsz z }. If the sth 

attribute is a numeric one, 1t
ijsz   is calculated by: 

                 1
_| |t t t t

ijs ijs best js ijsz z sl z z      ,                    (11) 
where   is the coefficient which is related to the scale of 
the problem to be solved, and the symbol .  denotes the 
absolute value. In (11), sl  is the step length of Lévy flight. 
In other words, sl  obeys Lévy distribution. As pointed out 
by Yang [22], the Mantega’s algorithm can be used to 
generate the step length of Lévy flight. In the Mantega’s 
algorithm, the step length sl  is calculated by: 

                                      1/| |
usl

v  ,                                  (12) 

where u  and v  obey the normal distribution as follows: 
                   2 2(0,  ),       (0,  ).u vu N v N                    (13) 
In (13), 

               
1/

( 1)/ 2

(1 )sin( / 2)
 ((1 ) / 2)2u





 


  

  
  

  
,   1v  ,      (14) 

where ( )   is the gamma function as follows: 

                       
0

(1 ) tt e dt
     .                                 (15) 

In the proposed approach, the worst nest will be abandoned 
by a cuckoo with the probability apro . For the abandoned 
nest t

abanz , the new nest t
newz  is generated as follows:  

                   (z ,z , z )t t t t
new aban f gz getNewSolution ,             (16) 

where t
abanz  denotes the abandoned nest, and the two 

solutions t
fz  and t

gz  are selected randomly from the set of 

candidate solutions. Let _
t
new jsz , _zt

aban js , t
fjsz , and t

gjsz  be 
the values of the sth attribute of the jth cluster centre in the 
solution t

newz , zt
aban ,  t

fz , and t
gz , respectively. If the sth 

attribute is a categorical one, _
t
new jsz  is the categorical value 

which is selected in a random way from the collection of 
values Vals= { _ , ,t t t

aban js fjs gjsz z z }. If the sth attribute is the 

numeric one, _
t
new jsz  is calculated by:  
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                    _ _ | |t t
new js aban js fjs gjsz z z z    ,                  (17) 

where   is a random number between 0 and 1. Based on 
the above descriptions, we give the process of the proposed 
approach in Algorithm CCS-K-Prototypes. 
 
Algorithm CCS-K-Prototypes 
Input: The cluster number k , the maximum number of 
generations (maxGen), the abandon probability apro , and 
the number of nests N , beta; 
Output: The best solution and the clustering result. 
1: Initialization: Initialize each nest  ( 1,2,  ...,  )iz i N  in 

the population P  randomly. More specifically, the 
candidate solution (1 )iz i N   is initialized as the 
k  data objects, which are randomly selected from 
the dataset X ; set the generation number 0t   for 
these candidate solutions. 

2:   Evaluate and pick up the best nest bestz  from the 
population P; 

3:  While (t<maxGen) 
4:    Get a cuckoo iz  according to (10), and calculate its 

fitness (z )iF  according to (6); 
5:        If ( (z ) (z )i bestF F ) 
6:           Replace the best nest bestz  by the new solution iz ; 
7:        End if 
8:        Assign a random value between the range [0, 1] to 

the probability tpro ; 
9:        If ( t apro pro ) 
10:         Abandon the worst nest worstz , and build a new one 

newz  according to (16); 
11:         Calculate the fitness for the new nest newz  

according to (6); 
12:      End if 
13:      If ( (z ) (z )new worstF F ) 
14:         Replace the worse nest worstz  by the new one newz ;  
15:      End if 
16:     Rank the solutions and keep the current best solution 

bestz ;  
17:      t=t+1; 
18:  End while 
19: Output the best solution bestz  and output the final 

clustering result 
 

B. AN EXAMPLE OF THE PROPOSED ALGORITHM  
In this section, for better illustrating our algorithm, we use a 
simple synthetic dataset to demonstrate the work process of 
the proposed CCS-K-Prototypes algorithm. The synthetic 
dataset contains seven data objects, each of which is 
described by two numeric attributes (age and height) and 
two categorical attributes (gender and hobby). These data 
objects are listed in Table 1. 

 
TABLE 1. The data objects of the synthetic dataset 
      Attributes 
ID 

Gender Age Height(cm)   hobby 

1 male 18 175 writing 
2 female 24 165 music 
3 female 23 175 tennis 
4 male 45 185 football 
5 male 35 195 basketball 
6 male 26 180 tennis 
7 female 22 172 music 

 
Suppose this dataset has two clusters. Let the cluster 

number k is 2; the maxGen is 3; the abandon probability 
apro  is 0.3; the number of nests N is 3; beta is 1.5. In the 

initialization stage, the three nests are initialized as three 
sets of two randomly chosen data objects. Suppose nest z1 
is the set of data objects 5 and 6, nest z2 is the set of data 
objects 1 and 7, and nest z3 is the set of data objects 3 and 6. 
We list the nest z1, z2, and z3 as follows:  
z1={male, 35.0, 195.0, basketball; male, 26.0, 180.0, tennis } 
z2={male, 18.0, 175.0, writing; female, 22.0, 172.0, music } 
z3={female, 23.0, 175.0, tennis; male, 26.0, 180.0, tennis } 
The fitness values of nests z1, z2, and z3, which are 
calculated using (6), are 7.75, 6.14, and 6.12, respectively. 
The nest z3 with the minimum value of fitness is chosen as 
the best nest bestz .  

In the local search of a cuckoo, nest z2 is randomly 
chosen as the current nest iz . According to (10), iz  is 
updated as: 
zi={male, 18.0, 175.03, tennis; female, 21.99, 171.96, music} 
The fitness value of nest zi is 6.14, which is higher than that 
of the best nest bestz . Therefore, the best nest keeps 
unchanged.  

In the global search of a cuckoo, the tpro is randomly 
set as 0.23, which is lower than the abandon probability 

apro . The worst nest z1 with the highest fitness value 7.75 
is abandoned, and a new one is generated according to (16). 
The new nest is listed as follows:  
znew={male, 18.0, 175.03, tennis; female, 21.99, 171.96, 
music} 
The fitness value of the new nest znew is 7.70, which is 
lower than that of the worst nest. Therefore, the worst nest 
is replaced by the new one. The updated candidate nests are 
listed as follows: 
z1={male, 18.0, 175.03, tennis; female, 21.99, 171.96, 
music} 
z2={male, 18.0, 175.0, writing; female, 22.0, 172.0, music} 
z3={female, 23.0, 175.0, tennis; male, 26.0, 180.0, tennis} 
The fitness values of z1, z2, and z3 are 7.70, 6.14, and 6.12, 
respectively. The best nest is updated as nest z3.  
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This search process will repeat until the number of 
generations reaches the maximum number of generations 
(maxGen). When the search process terminates, the best 
solution is: 
zbest={female, 23.0, 175.0, tennis; male, 26.0, 180.0, tennis} 
The clustering result is obtained according to the best 
solution zbest. There are two clusters in the clustering result. 
Let the symbol Cluster1 denotes the first cluster, and the 
symbol Cluster2 indicates the second cluster. In each 
cluster, the ID of data objects is listed as following: 
Cluster1={2,3,7} 
Cluster2={1,4,5,6}. 

C. ALGORITHM COMPLEXITY ANALYSIS 
In this section, we analyse the time and space complexity of 
the proposed CCS-K-prototypes approach. The time 
complexity of the proposed method mainly contains three 
parts: the initialization of host nests, the search for 
candidate solutions, and the calculation of the fitness of 
candidate solutions. The computational cost of these three 
parts are ( )O Nk , ( )O km , and ( )O nkm , respectively. Here 
N  is the number of host nests, n  is the number of data 
objects in the dataset X , m  is the number of attributes, and 
k  is the number of clusters. Therefore, the overall time 
complexity of the proposed approach is 

  kmO N s kk n m  , where s  is the number of 

generations. For space complexity, it requires ( )O mn  to 
store the dataset X , ( )O Nkm  to store the candidate 
solutions, and ( )O nk  to store the partition matrix. 
Therefore, the overall space complexity of our method is 

( )O mn Nkm nk  . 

IV. EXPERIMENTS AND DISCUSSION 
To assess the performance of CSS-K-Prototypes, we 

execute the CCS-K-Prototypes on five datasets: zoo, heart 
disease, credit approval, soybean, and breast cancer, which 
are obtained from the well-known UCI Machine Learning 
Repository (http://archive.ics.uci.edu/ml/datasets.html). The 
details of these datasets are given in Table 2. 
TABLE 2. The details of the datasets  
Dataset Number of 

numeric 
attributes 

Number of 
categorical 
attributes 

Number of 
data objects 

Number 
of classes 

Zoo  1 16 101 7 
Heart disease 
(Case 1) 

6 9 303 5 

Heart disease 
(Case 2) 

6 8 303 2 

Credit 
approval 

6 10 690 2 

Soybean  0 36 47 4 
Breast cancer 9 2 699 2 
 

In this work, we adopt Yang’s accuracy measures [34] and 
the Rand Index [35], which are two commonly used criteria, 
to evaluate the obtained clustering results. In Yang's method, 
the accuracy (AC), precision (PR), and recall (RE) is 
formulated as follows: 
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where ia  is the number of data objects that are correctly 
assigned to the class iC ,  ib  is the number of data objects 
that are incorrectly assigned to the class iC , ic  is the 
number of data objects that are incorrectly denied from the 
class iC , n  is the number of data objects in a dataset, and 
k  is the number of classes contained in the dataset. In 
Yang’s measures, AC has the same meaning as the 
clustering accuracy r given in [36], and PR has the same 
meaning as the purity of clusters given in [21]. Given a 
dataset 1 2{ , ,..., }nX x x x  as well as two partitions of this 
dataset: 

11 2  {y , y ,..., y }hY   and 
21 2  ' {y ', y ',..., y '}hY  , the 

Rand Index (RI) [35] is given as follows:  
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where ij  is determined as follows: 
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According to these measures, the higher values of AC, PR, 
RE, and RI denote the better clustering result. In the 
performance analysis, we run our proposed CCS-K-
Prototypes algorithm, the K-prototypes algorithm [15], the 
SBAC algorithm [37], the KL-FCM-GM algorithm [19], the 
EKP algorithm [38], and the ABC-K-Prototypes algorithm 
[39] to cluster five different datasets. For each dataset, we 
run twenty trials, and the average values of AC, PR, RE, and 
RI are calculated. The clustering results of the ACC-FSFDP 
algorithm reported in [21] are also supplied for comparison. 
Then we compare the clustering result of the proposed CCS-
K-Prototypes algorithm with those of the other six popular 
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algorithms according to the average of AC, PR, RE, and RI, 
respectively. All algorithms except ACC-FSFDP are 
implemented in Java language and run on a PC with Intel (R) 
Core (TM) i7, 3.4GHz CPU, and 16GB RAM. In all 
algorithms except ACC-FSFDP, the number of clusters k  is 
set as the number of classes provided by the class 
information of the datasets. We point out that other class 
information was not used in the clustering process except the 
number of classes. The other parameters of the K-prototypes 
algorithm, the SBAC algorithm, and the KL-FCM-GM 
algorithm, the EKP algorithm, and the ABC-K-Prototypes 
algorithm are set the same as those given in their original 
papers. In the proposed CCS-K-Prototypes algorithm, we set 
the maximum generations as 2,500 by the rule of thumb, and 
use the number of nests 15,  20,  25,  30,  35,  40,N   the 
abandon probability 0.15,  0.2,  0.25,  0.3apro  , and 
beta=1.5, which are the typical values given in the original 
cuckoo search algorithm [22], [24], [25]. 

We begin our experiments on the zoo dataset. This dataset 
contains 101 data objects, each of which is characterized by 
one numeric attribute and 16 categorical attributes. The last 
categorical attribute is the class attribute, and has seven 
values. The data objects in the zoo dataset therefore belong to 
one of the seven classes. Figs. 1a-1d give the effect of the 
number of nests N and the abandon probability apro  (pa for 
short) on the values of AC, PR, RE, and RI of the proposed 
CCS-K-Prototypes algorithm for clustering this dataset, 
respectively. From these figures, we can see that AC 
achieves its highest value when the number of nests N equals 
to 40, and the abandon probability pa equals to 0.2; PR 
obtains its highest value when the number of nests N equals 
to 30, and the abandon probability pa equals to 0.2; RE 
achieves its highest value when the number of nests N equals 
to 30, and the abandon probability pa equals to 0.3; RI 
obtains its highest value when the number of nests N equals 
to 20, and the abandon probability pa equals to 0.25. The 
results in Figs. 1a-1d illustrate that the performance of the 
proposed CCS-K-Prototypes algorithm on the zoo dataset is 
affected by the number of nests N and the abandon 
probability pa, and the CCS-K-Prototypes algorithm can 
achieve reasonably good results within the given range of N 
and pa. In Tables 3a-3d, we summarize the clustering results 
of the CCS-K-Prototypes, the K-Prototypes, the SBAC, the 
KL-FCM-GM, the EKP, and the ABC-K-Prototypes 
algorithms on the zoo dataset according to AC, PR, RE, and 
RI, respectively. In Tables 3a-3b, we also list the clustering 
results of the algorithm ACC-FSFDP, which are taken from 
[21]. The results in Tables 3a-3d indicate that our proposed 
CCS-K-Prototypes approach achieves the highest values on 
AC, PR, RE, and obtains a near highest value on RI.  

 
FIGURE 1a. The accuracy (AC) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the zoo dataset 
 
TABLE 3a. The accuracy (AC) of the seven algorithms on the zoo dataset 

Algorithms AC 
K-Prototypes 0.806 
SBAC 0.426 
KL-FCM-GM 0.870 ( 1.3  ) 
EKP 0.628 
ABC-K-Prototypes 0.886 
ACC-FSFDP 0.874 
CCS-K-Prototypes 0.888 (N=40, pa=0.2) 

 

 
FIGURE 1b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the zoo dataset 
 
 
TABLE 3b. The precision (PR) of the seven algorithms on the zoo 
dataset 

Algorithms PR 
K-Prototypes 0.827 
SBAC 0.484 
KL-FCM-GM 0.844 ( 1.3  ) 
EKP 0.729 

ABC-K-Prototypes 0.861 
ACC-FSFDP 0.862 
CCS-K-Prototypes 0.873 (N=30, pa=0.2) 
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FIGURE 1c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the zoo dataset 
 
TABLE 3c. The recall (RE) of the six algorithms on the zoo dataset 

Algorithms RE 

K-Prototypes 0.636 
SBAC 0.172 

KL-FCM-GM 0.685 ( 1.3  ) 
EKP 0.419 

ABC-K-Prototypes 0.718 
CCS-K-Prototypes 0.709 (N=30, pa=0.3) 

 

 
FIGURE 1d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the zoo dataset 
 
TABLE 3d. The rand index (RI) of the six algorithms on the zoo dataset 

Algorithms RI 
K-Prototypes 0.857 
SBAC 0.648 

KL-FCM-GM 0.918 ( 1.8  ) 
EKP 0.601 
ABC-K-Prototypes 0.894 
CCS-K-Prototypes 0.901 (N=20, pa=0.25) 

   
The heart disease dataset has 303 patient instances, each of 

which is described by six numeric attributes and nine 
categorical attributes. The last two attributes are class 
attributes. When we take the 15th attribute as its class 
attribute, the data objects in this dataset belong to one of five 
classes (s1, s2, s3, s4, and H), and each of them is described 
by 14 attributes; when we take the 14th attribute as its class 

attribute, the data objects in this dataset belong to one of two 
classes (buff, sick), and each of them is described by 13 
attributes. For the first case, Figs. 2a-2d present the effect of 
the number of nests N and the abandon probability apro  (pa 
for short) on the values of AC, PR, RE, and RI of the 
proposed CCS-K-Prototypes algorithm for clustering this 
dataset, respectively. From these figures, we can see that AC 
achieves its highest value when the number of nests N equals 
to 30, and the abandon probability pa equals to 0.2; PR 
obtains its highest value when the number of nests N equals 
to 40, and the abandon probability pa equals to 0.15; RE 
achieves its highest value when the number of nests N equals 
to 35, and the abandon probability pa equals to 0.15; RI 
obtains its highest value when the number of nests N equals 
to 35, the abandon probability pa equals to 0.25. The results 
in Figs. 2a-2d show that the performance of the proposed 
CCS-K-Prototypes algorithm on the heart disease dataset 
(first case) is affected by the number of nests N and the 
abandon probability pa, and the CCS-K-Prototypes algorithm 
can achieve reasonably good results within the given range of 
N and pa. In Tables 4a-4d, we list the clustering results of the 
CCS-K-Prototypes, the K-Prototypes, the SBAC, the KL-
FCM-GM, the EKP, and the ABC-K-Prototypes algorithms 
on the heart diseases dataset (first case) according to AC, PR, 
RE, and RI, respectively. The results in Tables 4a-4d indicate 
that our proposed CCS-K-Prototypes approach achieves the 
highest values or near highest values on most of the four 
measures. 

 

 
FIGURE 2a. The accuracy (AC) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (5 classes 
and 14 attributes) 

 
TABLE 4a. The accuracy (AC) of the six algorithms on the heart 
disease dataset (5 classes and 14 attributes) 

Algorithms AC 

K-Prototypes 0.547 
SBAC 0.545 
KL-FCM-GM 0.653 ( 1.2  ) 
EKP 0.545 
ABC-K-Prototypes 0.648 
CCS-K-Prototypes 0.648 (N=30, pa=0.2) 
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FIGURE 2b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (5 classes 
and 14 attributes) 
 
TABLE 4b. The precision (PR) of the six algorithms on the heart 
disease dataset (5 classes and 14 attributes) 

Algorithms PR 

K-Prototypes 0.521 
SBAC 0.566 
KL-FCM-GM 0.766 ( 1.9  ) 
EKP 0.109 
ABC-K-Prototypes 0.658 
CCS-K-Prototypes 0.675 (N=40, pa=0.15) 

 

 
FIGURE 2c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the heart disease dataset (5 classes and 
14 attributes) 
 
TABLE 4c. The recall (RE) of the six algorithms on the heart disease 
dataset (5 classes and 14 attributes) 

Algorithms RE 

K-Prototypes 0.216 
SBAC 0.2 

KL-FCM-GM 0.395 ( 1.4  ) 
EKP 0.2 
ABC-K-Prototypes 0.379 

CCS-K-Prototypes 0.388 (N=35, pa=0.15) 

 

 
FIGURE 2d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (5 classes 
and 14 attributes) 
 
TABLE 4d. The rand index (RI) of the six algorithms on the heart 
disease dataset (5 classes and 14 attributes) 

Algorithms RI 

K-Prototypes 0.601 

SBAC 0.503 

KL-FCM-GM 0.673 ( 1.2  ) 
EKP 0.355 

ABC-K-Prototypes 0.667 
CCS-K-Prototypes 0.680 (N=35, pa=0.25) 

 
For the second case where each data object in the heart 

disease dataset is characterized by 13 attributes and the 14th 
attribute is taken as its class attribute. Figs. 3a-3d illustrate 
the effect of the number of nests N, and the abandon 
probability apro  (pa for short) on the values of AC, PR, RE, 
and RI of the proposed CCS-K-Prototypes algorithm for 
clustering this dataset, respectively. From these figures, we 
can see that AC achieves its highest value when the number 
of nests N equals to 20, and the abandon probability pa 
equals to 0.3; PR obtains its highest value when the number 
of nests N equals to 20, and the abandon probability pa 
equals to 0.3; RE achieves its highest value when the number 
of nests N equals to 20, and the abandon probability pa 
equals to 0.3; RI obtains its highest value when the number 
of nests N equals to 20, and the abandon probability pa 
equals to 0.3. The results in Figs. 3a-3d show that the 
performance of the proposed CCS-K-Prototypes algorithm 
on heart disease dataset (second case) is affected by the 
number of nests N and the abandon probability pa not 
obviously except for pa equalling to 0.25, and the CCS-K-
Prototypes algorithm can achieve reasonably good results 
within the given range of N and pa. In Tables 5a-5d, we 
summarize the clustering results of the CCS-K-Prototypes, 
the K-Prototypes, the SBAC, the KL-FCM-GM, the EKP, 
and the ABC-K-Prototypes algorithms on the heart diseases 
dataset (second case) according to AC, PR, RE, and RI, 
respectively. The results in Tables 5a-5d indicate that our 
proposed CCS-K-Prototypes approach achieves the highest 
value on all the four measures AC, PR, RE, and RI.  
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FIGURE 3a. The accuracy (AC) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (2 classes 
and 13 attributes) 
 
TABLE 5a. The accuracy (AC) of the six algorithms on the heart 
disease dataset (2 classes and 13 attributes) 

Algorithms AC 

K-Prototypes 0.577 
SBAC 0.545 
KL-FCM-GM 0.762 ( 1.7  ) 
EKP 0.545 
ABC-K-Prototypes 0.809 
CCS-K-Prototypes 0.812 (N=20, pa=0.3) 

 

 
FIGURE 3b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (2 classes 
and 13 attributes) 
 
TABLE 5b. The precision (PR) of the six algorithms on the heart 
disease dataset (2 classes and 13 attributes) 

Algorithms PR 

K-Prototypes 0.570 
SBAC 0.567 
KL-FCM-GM 0.783 ( 2.6  ) 
EKP 0.272 
ABC-K-Prototypes 0.808 
CCS-K-Prototypes 0.812 (N=20, pa=0.3) 

 

 
FIGURE 3c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the heart disease dataset (2 classes and 
13 attributes) 
 
TABLE 5c. The recall (RE) of the six algorithms on the heart disease 
dataset (2 classes and 13 attributes) 

Algorithms RE 

K-Prototypes 0.566 
SBAC 0.5 
KL-FCM-GM 0.768 ( 1.7  ) 
EKP 0.5 
ABC-K-Prototypes 0.806 
CCS-K-Prototypes 0.809 (N=20, pa=0.3) 

 

 
FIGURE 3d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the heart disease dataset (2 classes 
and 13 attributes) 
 
TABLE 5d. The rand index (RI) of the six algorithms on the heart 
disease dataset (2 classes and 13 attributes) 

Algorithms RI 

K-Prototypes 0.510 
SBAC 0.499 
KL-FCM-GM 0.641 ( 1.7  ) 
EKP 0.502 
ABC-K-Prototypes 0.689 
CCS-K-Prototypes 0.694 (N=20, pa=0.3) 

 
The credit approval dataset contains 690 data objects from 

credit card organizations, where each data object has ten 
categorical attributes and six numeric attributes. The last 
attribute is the class attribute, and has two values (negative 
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and positive). Figs. 4a-4d illustrate the effect of the number 
of nests N and the abandon probability apro (pa for short) on 
the values of AC, PR, RE, and RI of the proposed CCS-K-
Prototypes algorithm for clustering this dataset, respectively. 
From these figures, we can see that AC achieves its highest 
value when the number of nests N equals to 30, and the 
abandon probability pa equals to 0.2; PR obtains its highest 
value when the number of nests N equals to 30, and the 
abandon probability pa equals to 0.2; RE achieves its highest 
value when the number of nests N equals to 30, and the 
abandon  probability pa equals to 0.2; RI obtains its highest 
value when the number of nests N equals to 30, and the 
abandon  probability pa equals to 0.2. The results in Figs. 4a-
4d show that the performance of the proposed CCS-K-
Prototypes algorithm on the credit approval dataset is 
affected by the number of nests N and the abandon 
probability pa not obviously, and the CCS-K-Prototypes 
algorithm can achieve reasonably good results within the 
given range of N and pa. In Tables 6a-6d, we summarize the 
clustering results of the CCS-K-Prototypes, the K-Prototypes, 
the SBAC, the KL-FCM-GM, the EKP, and the ABC-K-
Prototypes algorithms on this dataset according to AC, PR, 
RE, and RI, respectively. In Tables 6a-6b, we also supply the 
clustering results of the algorithm ACC-FSFDP, which are 
taken from [21]. The results in Tables 6a-6d indicate that our 
proposed CCS-K-Prototypes approach achieves the highest 
values or near highest values on all the four measures AC, 
PR, RE, and RI. 
 

 
FIGURE 4a. The accuracy (AC) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the credit approval dataset 
 
TABLE 6a. The accuracy (AC) of the seven algorithms on the credit 
approval dataset 

Algorithms AC 

K-Prototypes 0.562 
SBAC 0.555 
KL-FCM-GM 0.578 ( 2.4  ) 
EKP 0.686 
ABC-K-Prototypes 0.794 
ACC-FSFDP 0.784 
CCS-K-Prototypes 0.796 (N=30, pa=0.2) 

 

 
FIGURE 4b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the credit approval dataset 
 
TABLE 6b. The precision (PR) of the seven algorithms on the credit 
approval dataset 

Algorithms PR 

K-Prototypes 0.780 
SBAC 0.558 
KL-FCM-GM 0.642 ( 2.4  ) 
EKP 0.724 
ABC-K-Prototypes 0.792 
ACC-FSFDP 0.814 
CCS-K-Prototypes 0.794 (N=30, pa=0.2) 

 

 
FIGURE 4c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the credit approval dataset 
 
TABLE 6c. The recall (RE) of the six algorithms on the credit approval 
dataset 

Algorithms RE 

K-Prototypes 0.508 
SBAC 0.5 
KL-FCM-GM 0.549 ( 2.4  ) 
EKP 0.657 
ABC-K-Prototypes 0.795 
CCS-K-Prototypes 0.796 (N=30, pa=0.2) 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2973216, IEEE Access

 

VOLUME XX, 2017 9 

 
FIGURE 4d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the credit approval dataset 
 
TABLE 6d. The rand index (RI) of the six algorithms on the credit 
approval dataset 

Algorithms RI 

K-Prototypes 0.507 
SBAC 0.499 
KL-FCM-GM 0.513 ( 2.4  ) 
EKP 0.568 
ABC-K-Prototypes 0.673 
CCS-K-Prototypes 0.674 (N=30, pa=0.2) 

 
The soybean dataset consists of 47 data objects, where 

each data object is described by 36 categorical attributes. The 
last attribute is the class attribute with four values: diaporthe-
stem-canker, charcoal-rot, rhizoctonia-root-rot, and 
phytophthora-rot. Figs. 5a-5d illustrate the effect of the 
number of nests N and the abandon probability apro (pa for 
short) on the values of AC, PR, RE, and RI of the proposed 
CCS-K-Prototypes algorithm for clustering this dataset, 
respectively. From these figures, we can see that AC, PR, RE, 
and RI achieve their highest values when the number of nests 
N equals to 20, and the probability pa equals to 0.3. The 
results in Figs. 5a-5d show that the performance of the 
proposed CCS-K-Prototypes algorithm on the soybean 
dataset is not significantly affected by the number of nests N 
and the abandon probability pa, and the CCS-K-Prototypes 
algorithm can achieve reasonably good results within the 
given range of N and pa. In Tables 7a-7d, we list the 
clustering results of the CCS-K-Prototypes, K-Prototypes, 
SBAC, KL-FCM-GM, EKP, and ABC-K-Prototypes 
algorithms on this dataset in terms of AC, PR, RE, and RI, 
respectively. In Tables 7a-7b, we also supply the clustering 
results of the algorithm ACC-FSFDP, which are taken from 
[21]. The results in Tables 7a-7d indicate that performance of 
our proposed CCS-K-Prototypes approach outperforms most 
other algorithms according to the measures of AC, PR, RE, 
and RI. 

 
FIGURE 5a. The accuracy (AC) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the soybean dataset 
 
TABLE 7a. The accuracy (AC) of the seven algorithms on the soybean 
dataset 

Algorithms AC 

K-Prototypes 0.855 
SBAC 0.362 
KL-FCM-GM 0. 969 ( 2.8  ) 
EKP 0.993 
ABC-K-Prototypes 0.982 
ACC-FSFDP 0.957 
CCS-K-Prototypes 0.989 (N=20, pa=0.3) 

 

 
FIGURE 5b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the soybean dataset 
 
TABLE 7b. The precision (PR) of the seven algorithms on the soybean 
dataset 

Algorithms PR 

K-Prototypes 0.903 
SBAC 0.829 
KL-FCM-GM 0.983 ( 2.8  ) 
EKP 0.993 
ABC-K-Prototypes 0.983 
ACC-FSFDP 0.985 
CCS-K-Prototypes 0.990 (N=20, pa=0.3) 
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FIGURE 5c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the soybean dataset 
 
TABLE 7c. The recall (RE) of the six algorithms on the soybean dataset 

Algorithms RE 

K-Prototypes 0.849 
SBAC 0.250 
KL-FCM-GM 0.968 ( 2.8  ) 
EKP 0.994 
ABC-K-Prototypes 0.988 
CCS-K-Prototypes 0.991 (N=20, pa=0.3) 

 

 
FIGURE 5d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the soybean dataset 
 
TABLE 7d. The rand index (RI) of the six algorithms on the soybean 
dataset 

Algorithms RI 

K-Prototypes 0.884 
SBAC 0.292 
KL-FCM-GM 0.973 ( 2.8  ) 
EKP 0.993 
ABC-K-Prototypes 0.981 
CCS -K-Prototypes 0.988 (N=20, pa=0.3) 

 
The breast cancer dataset has 699 data objects, where each 

data object is described by eleven attributes. The first 
attribute is the sample code number, which is not used in 
clustering analysis; while the last attribute is the class 
attribute, and it has two values: benign and malignant. Figs. 
6a-6d illustrate the effect of the number of nests N and the 
abandon probability apro  (pa for short) on the AC, PR, RE, 
and RI of the proposed CCS-K-Prototypes algorithm for 
clustering this dataset, respectively. From these figures, we 
can see that AC, PR, RE, and RI achieve their highest values 

when the number of nests N equals to 40, and the abandon 
probability pa equals to 0.3. The results in Figs. 6a-6d show 
that the performance of the proposed CCS-K-Prototypes 
algorithm on breast cancer dataset is not significantly 
affected by the number of nests N and the abandon 
probability pa, and the CCS-K-Prototypes algorithm can 
achieve reasonably good results within the given range of N 
and pa. In Tables 8a-8d, we list the clustering results of the 
CCS-K-Prototypes, the K-Prototypes, the SBAC, the KL-
FCM-GM, the EKP, and the ABC-K-Prototypes algorithms 
on this dataset according to AC, PR, RE, and RI, respectively. 
In Tables 8a-8b, we also supply the clustering results of the 
algorithm ACC-FSFDP, which are taken from [21]. The 
results in Tables 8a-8d show that performance of our 
proposed CCS-K-Prototypes approach outperforms most 
other algorithms according to the measures AC, PR, RE, and 
RI. 

 
FIGURE 6a. The accuracy (AC) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the breast cancer dataset 
 
TABLE 8a. The accuracy (AC) of the seven algorithms on the breast 
cancer dataset 

Algorithms AC 

K-Prototypes 0.961 
SBAC 0.655 
KL-FCM-GM 0.804 ( 1.1  ) 
EKP 0.701 
ABC-K-Prototypes 0.959 
ACC-FSFDP 0.938 
CCS-K-Prototypes 0.958 (N=40, pa=0.3) 
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FIGURE 6b. The precision (PR) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the breast cancer dataset 
 
TABLE 8b. The precision (PR) of the seven algorithms on the breast 
cancer dataset 

Algorithms PR 

K-Prototypes 0.959 
SBAC 0.650 
KL-FCM-GM 0.813 ( 1.1  ) 
EKP 0.767 
ABC-K-Prototypes 0.958 
ACC-FSFDP 0.947 
CCS-K-Prototypes 0.957 (N=40, pa=0.3) 

 

 
FIGURE 6c. The recall (RE) of the CCS-K-Prototypes algorithm with 
varying values of N and pa on the breast cancer dataset 
 
TABLE 8c. The recall (RE) of the six algorithms on the breast cancer 
dataset 

Algorithms RE 

K-Prototypes 0.954 
SBAC 0.500 
KL-FCM-GM 0.753 ( 1.1  ) 
EKP 0.771 
ABC-K-Prototypes 0.952 
CCS-K-Prototypes 0.949 (N=40, pa=0.3) 

 

 
FIGURE 6d. The rand index (RI) of the CCS-K-Prototypes algorithm 
with varying values of N and pa on the breast cancer dataset 
 
TABLE 8d. The rand index (RI) of the six algorithms on the breast 
cancer dataset 

Algorithms RI 

K-Prototypes 0.925 
SBAC 0.511 
KL-FCM-GM 0.686 ( 1.1  ) 
EKP 0.580 
ABC-K-Prototypes 0.922 
CCS-K-Prototypes 0.919 (N=40, pa=0.3) 

 
The results in Figs. 1a-6d show that the number of nests N 

and the abandon probability apro  (pa for short) have a slight 
impact on the performance of the proposed CCS-K-
Prototypes approach on all datasets according to the 
measures of AC, PR, RE, and RI. Moreover, the CCS-K-
Prototypes approach achieves high and stable values of all 
these measures in most cases. Therefore, we can say that the 
proposed CCS-K-Prototypes algorithm can achieve a 
reasonably good performance within the given range of N 
and pa. The experimental results in Tables 3a-8d show that 
our proposed CCS-K-Prototypes algorithm achieves the 
highest or near highest values of AC, PR, RE, and RI in most 
cases. Therefore, the proposed CCS-K-Prototypes algorithm 
outperforms the other six popular algorithms according to 
these measures.  

We believe that the reason for the success of the CCS-K-
Prototypes approach in the above experiments is as follows: 
this approach has the ability of efficiently performing global 
search and local search by introducing the CS search 
framework. The global search is used to search for candidate 
solutions in the entire attribute space, and the local search is 
used to search for candidate solutions around existing 
solutions. Therefore, the proposed CCS-K-Prototypes 
algorithm can obtain optimal or near optimal results.  

V. CONCLUSIONS AND FUTURE WORK 
Data objects with both numeric and categorical attributes 
are ubiquitous in many real-world applications. In this 
paper, we have proposed a novel clustering algorithm CCS-
K-Prototypes (Clustering based on Cuckoo Search and K-
Prototypes) for mixed numeric and categorical data. In our 
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algorithm, we converted the clustering task into the 
problem of searching for the cluster centres. To deal with 
different types of attributes, we propose a representation 
method for candidate solutions, and develop approaches of 
local search around an existing solution and global search 
in the entire attribute space. These are the major 
innovations in this research. We then analysed the time and 
space complexity of the CCS-K-Prototypes algorithm, and 
tested this algorithm on five datasets according to the 
clustering accuracy (AC), precision (PR), recall (RE), and 
rand index (RI). We also illustrate the effect of the number 
of nests N and the abandon probability apro  on the 
performance of the CCS-K-Prototypes algorithm. The 
results in Figs. 1a-6d show that the number of nests N and 
the abandon probability apro  (pa for short) have a slight 
impact on the performance of the CCS-K-Prototypes 
algorithm. In addition, the CCS-K-Prototypes algorithm can 
achieve promising results on all datasets within the given 
range of the number of nests N and the abandon probability 

apro . In comparison with other six popular algorithms, we 
found that our proposed CCS-K-Prototypes algorithm 
outperformed other algorithms in most cases.  

Our future work will consider sparse representation and 
multi-objective optimisation approaches to clustering mixed 
data. This is based on the following considerations: the 
sparse representation models can be used to obtain the sparse 
representation for a data object. Sparse representation has 
been applied in numerous computer vision tasks such as 
image classification and clustering, and it achieves promising 
performance [40], [41]. Additionally, multi-objective 
optimization via meta-heuristic has demonstrated promising 
results in many applications including clustering analysis 
[27], [42]. Therefore, in our future work, we would like to 
explore the potential of these two approaches to clustering 
mixed data.   

Another line of future research will involve multi-view 
clustering and deep clustering for mixed data. Multi-view 
clustering was introduced by Bickel and Scheffer [43], and 
has attracted considerable attention in recently years [44]. 
With the success of deep learning, deep clustering is 
emerging as an interesting research direction. In [44], 
MvSCN (multi-view spectral clustering network) was 
proposed as a deep version of multi-view spectral clustering 
[44]. In addition, MMFA (multiple marginal Fisher analysis) 
can estimate the feature dimension automatically [45]. These 
approaches have demonstrated promising results on image 
and text data. Therefore, in our future work, we would like to 
explore the task of clustering the mixed data by integration 
these two approaches with CS strategy.  
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