429 research outputs found

    Interference Suppression in WCDMA with Adaptive Thresholding based Decision Feedback Equaliser

    Get PDF
    WCDMA is considered as one of the 3G wireless standards by 3GPP. Capacity calculation shows that WCDMA systems have more capacity compared to any other multiple access technique such as time division multiple access (TDMA) or frequency division multiple access (FDMA). So it is widely used. Rake receivers are used for the detection of transmitted data in case of WCDMA communication systems due to its resistance to multipath fading. But rake receiver treat multiuser interference (MUI) as AWGN and have limitation in overcoming the effect of multiple access interference (MAI) when the SNR is high. A de-correlating matched filter has been used in this thesis, which eliminates and improves system performance. But the given receiver works well only in the noise free environment. A DFE, compared to linear equaliser, gives better performance at severe ISI condition. The only problem in this equalisation technique is to select the number of symbols that are to be fed back. This thesis gives an idea on multiple symbol selection, based on sparity where an adaptive thresholding algorithm is used that computes the number of symbols to feedback. Simulated results show a significant performance improvement for Regularised Rake receiver along with thresholding in terms of BER compared to a rake receiver, de-correlating rake receiver and regularised rake receiver. The performance of the receiver in different channels is also analysed

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Adaptive DSP Algorithms for UMTS: Blind Adaptive MMSE and PIC Multiuser Detection

    Get PDF
    A study of the application of blind adaptive Minimum Mean Square Error (MMSE) and Parallel Interference Cancellation (PIC) multiuser detection techniques to Wideband Code Division Multiple Access (WCDMA), the physical layer of Universal Mobile Telecommunication System (UMTS), has been performed as part of the Freeband Adaptive Wireless Networking project. This study was started with an analysis of Code Division Multiple Access (CDMA) and conventional CDMA detection. After that blind adaptive MMSE and PIC detection have been analyzed for general CDMA systems. Then the differences between WCDMA and general CDMA were analyzed and the results have been used to determine how blind adaptive MMSE and PIC can be implemented in WCDMA systems. Blind adaptive MMSE has been implemented inWCDMASim, aWCDMA simulator and some preliminary simulation results obtained with this simulator are presented. These simulation results do not yet show the performance that was expected of blind adaptive MMSE detection based on simulation results obtained in previous research. The cause for these unexpected results is not yet known and will be the subject of further research.\ud Implementation of PIC detection in WCDMASim was found to require changes to the architecture of the WCDMASim simulator. Implementation of these changes and solving the problems with blind adaptive MMSE detection are considered for future work

    A New Combination of RAKE Receiver and Adaptive Antenna Array Beamformer for Multiuser Detection in WCDMA Systems

    Get PDF
    The aim of this paper is to combine smart antenna beamforming and RAKE receiver in wideband code division multiple access (WCDMA). The proposed method combines spatial diversity as well as temporal diversity to improve the performance and overcome both interferences and multipath fading. This investigation has focused on one of the new proposed blind beamforming algorithms. It is based on constrained constant modulus (CCM) algorithm which is used for deriving a recursive-least-squares (RLS-) type optimization algorithm. We illustrate the comparison of bit error rate (BER) of the proposed receiver with simple correlator and also 1D-RAKE receiver in multiuser detection (MUD) WCDMA. The simulation results show that the proposed 2D-RAKE receiver offers lower BER rather than conventional ones, that is, it is an effective solution for decreasing the effect of interference and increasing the capacity, in a joint state

    Narrowband Interference Suppression in Wireless OFDM Systems

    Full text link
    Signal distortions in communication systems occur between the transmitter and the receiver; these distortions normally cause bit errors at the receiver. In addition interference by other signals may add to the deterioration in performance of the communication link. In order to achieve reliable communication, the effects of the communication channel distortion and interfering signals must be reduced using different techniques. The aim of this paper is to introduce the fundamentals of Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA), to review and examine the effects of interference in a digital data communication link and to explore methods for mitigating or compensating for these effects

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstract—This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Terms—Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart
    corecore