1,136 research outputs found

    Efficiency Guarantees in Auctions with Budgets

    Full text link
    In settings where players have a limited access to liquidity, represented in the form of budget constraints, efficiency maximization has proven to be a challenging goal. In particular, the social welfare cannot be approximated by a better factor then the number of players. Therefore, the literature has mainly resorted to Pareto-efficiency as a way to achieve efficiency in such settings. While successful in some important scenarios, in many settings it is known that either exactly one incentive-compatible auction that always outputs a Pareto-efficient solution, or that no truthful mechanism can always guarantee a Pareto-efficient outcome. Traditionally, impossibility results can be avoided by considering approximations. However, Pareto-efficiency is a binary property (is either satisfied or not), which does not allow for approximations. In this paper we propose a new notion of efficiency, called \emph{liquid welfare}. This is the maximum amount of revenue an omniscient seller would be able to extract from a certain instance. We explain the intuition behind this objective function and show that it can be 2-approximated by two different auctions. Moreover, we show that no truthful algorithm can guarantee an approximation factor better than 4/3 with respect to the liquid welfare, and provide a truthful auction that attains this bound in a special case. Importantly, the liquid welfare benchmark also overcomes impossibilities for some settings. While it is impossible to design Pareto-efficient auctions for multi-unit auctions where players have decreasing marginal values, we give a deterministic O(logn)O(\log n)-approximation for the liquid welfare in this setting

    Composable and Efficient Mechanisms

    Full text link
    We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple different mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome in equilibrium both in the full information setting and in the Bayesian setting with uncertainty about participants, as well as in learning outcomes. Our main result is to show that such mechanisms compose well: smoothness locally at each mechanism implies efficiency globally. For mechanisms where good performance requires that bidders do not bid above their value, we identify the notion of a weakly smooth mechanism. Weakly smooth mechanisms, such as the Vickrey auction, are approximately efficient under the no-overbidding assumption. Similar to smooth mechanisms, weakly smooth mechanisms behave well in composition, and have high quality outcome in equilibrium (assuming no overbidding) both in the full information setting and in the Bayesian setting, as well as in learning outcomes. In most of the paper we assume participants have quasi-linear valuations. We also extend some of our results to settings where participants have budget constraints

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Welfare and Revenue Guarantees for Competitive Bundling Equilibrium

    Full text link
    We study equilibria of markets with mm heterogeneous indivisible goods and nn consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the widespread use of bundling in real-life markets, we study its role as a stabilizing and coordinating device by considering the notion of \emph{competitive bundling equilibrium}: a competitive equilibrium over the market induced by partitioning the goods for sale into fixed bundles. Compared to other equilibrium concepts involving bundles, this notion has the advantage of simulatneous succinctness (O(m)O(m) prices) and market clearance. Our first set of results concern welfare guarantees. We show that in markets where consumers care only about the number of goods they receive (known as multi-unit or homogeneous markets), even in the presence of complementarities, there always exists a competitive bundling equilibrium that guarantees a logarithmic fraction of the optimal welfare, and this guarantee is tight. We also establish non-trivial welfare guarantees for general markets, two-consumer markets, and markets where the consumer valuations are additive up to a fixed budget (budget-additive). Our second set of results concern revenue guarantees. Motivated by the fact that the revenue extracted in a standard competitive equilibrium may be zero (even with simple unit-demand consumers), we show that for natural subclasses of gross substitutes valuations, there always exists a competitive bundling equilibrium that extracts a logarithmic fraction of the optimal welfare, and this guarantee is tight. The notion of competitive bundling equilibrium can thus be useful even in markets which possess a standard competitive equilibrium

    A Blotto Game with Multi-Dimensional Incomplete Information

    Get PDF
    In the Colonel Blotto game, each of two players simultaneously allocates his fixed budget of a resource across a finite number n of battleelds. Within each battlefield, the player that allocates the higher level of the resource wins the battlefield. Each player's payoff is equal to the sum of the values of the battlefields he wins. In this paper we examine a multi-dimensional incomplete information version of the Colonel Blotto game in which each player's n-tuple of battlefield valuations is drawn from a common n-variate joint distribution function.Colonel Blotto Game, Con ict, Multi-dimensional Incomplete Information, Multi-dimensional Action Space

    The Role of Auctions in Allocating Public Resources

    Get PDF
    This paper provides an economic framework within which to consider the effectiveness and limitations of auction markets. The paper looks at the use of auctions as a policy instrument and the effects of auction design on consumer interests, the efficient allocation of resources, and industry competitiveness.Australia; Research; Ascending-bid auction; Auctions; Bidders; Conservation funds; Descending-bid auction; Dutch auction; English auction; Environmental Management; First-price sealed-bid auction; Infrastructure; Markets; Oral auction; Outcry auction; Pollutant emission permits; Power supply contracts; Public resources; Radio- spectrum; Second-price sealed-bid auction Spectrum licences; Vickrey auction; Water rights;

    Pricing Ad Slots with Consecutive Multi-unit Demand

    Full text link
    We consider the optimal pricing problem for a model of the rich media advertisement market, as well as other related applications. In this market, there are multiple buyers (advertisers), and items (slots) that are arranged in a line such as a banner on a website. Each buyer desires a particular number of {\em consecutive} slots and has a per-unit-quality value viv_i (dependent on the ad only) while each slot jj has a quality qjq_j (dependent on the position only such as click-through rate in position auctions). Hence, the valuation of the buyer ii for item jj is viqjv_iq_j. We want to decide the allocations and the prices in order to maximize the total revenue of the market maker. A key difference from the traditional position auction is the advertiser's requirement of a fixed number of consecutive slots. Consecutive slots may be needed for a large size rich media ad. We study three major pricing mechanisms, the Bayesian pricing model, the maximum revenue market equilibrium model and an envy-free solution model. Under the Bayesian model, we design a polynomial time computable truthful mechanism which is optimum in revenue. For the market equilibrium paradigm, we find a polynomial time algorithm to obtain the maximum revenue market equilibrium solution. In envy-free settings, an optimal solution is presented when the buyers have the same demand for the number of consecutive slots. We conduct a simulation that compares the revenues from the above schemes and gives convincing results.Comment: 27page

    Mechanism design with budget constraints and a population of agents

    Get PDF
    corecore