2,015 research outputs found

    A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos

    Full text link
    Deep learning models have been widely used for anomaly detection in surveillance videos. Typical models are equipped with the capability to reconstruct normal videos and evaluate the reconstruction errors on anomalous videos to indicate the extent of abnormalities. However, existing approaches suffer from two disadvantages. Firstly, they can only encode the movements of each identity independently, without considering the interactions among identities which may also indicate anomalies. Secondly, they leverage inflexible models whose structures are fixed under different scenes, this configuration disables the understanding of scenes. In this paper, we propose a Hierarchical Spatio-Temporal Graph Convolutional Neural Network (HSTGCNN) to address these problems, the HSTGCNN is composed of multiple branches that correspond to different levels of graph representations. High-level graph representations encode the trajectories of people and the interactions among multiple identities while low-level graph representations encode the local body postures of each person. Furthermore, we propose to weightedly combine multiple branches that are better at different scenes. An improvement over single-level graph representations is achieved in this way. An understanding of scenes is achieved and serves anomaly detection. High-level graph representations are assigned higher weights to encode moving speed and directions of people in low-resolution videos while low-level graph representations are assigned higher weights to encode human skeletons in high-resolution videos. Experimental results show that the proposed HSTGCNN significantly outperforms current state-of-the-art models on four benchmark datasets (UCSD Pedestrian, ShanghaiTech, CUHK Avenue and IITB-Corridor) by using much less learnable parameters.Comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT

    Temporal Cues from Socially Unacceptable Trajectories for Anomaly Detection

    Get PDF

    Normalizing Flows for Human Pose Anomaly Detection

    Full text link
    Video anomaly detection is an ill-posed problem because it relies on many parameters such as appearance, pose, camera angle, background, and more. We distill the problem to anomaly detection of human pose, thus reducing the risk of nuisance parameters such as appearance affecting the result. Focusing on pose alone also has the side benefit of reducing bias against distinct minority groups. Our model works directly on human pose graph sequences and is exceptionally lightweight (∼1K\sim1K parameters), capable of running on any machine able to run the pose estimation with negligible additional resources. We leverage the highly compact pose representation in a normalizing flows framework, which we extend to tackle the unique characteristics of spatio-temporal pose data and show its advantages in this use case. Our algorithm uses normalizing flows to learn a bijective mapping between the pose data distribution and a Gaussian distribution, using spatio-temporal graph convolution blocks. The algorithm is quite general and can handle training data of only normal examples, as well as a supervised dataset that consists of labeled normal and abnormal examples. We report state-of-the-art results on two anomaly detection benchmarks - the unsupervised ShanghaiTech dataset and the recent supervised UBnormal dataset

    A New Comprehensive Benchmark for Semi-supervised Video Anomaly Detection and Anticipation

    Full text link
    Semi-supervised video anomaly detection (VAD) is a critical task in the intelligent surveillance system. However, an essential type of anomaly in VAD named scene-dependent anomaly has not received the attention of researchers. Moreover, there is no research investigating anomaly anticipation, a more significant task for preventing the occurrence of anomalous events. To this end, we propose a new comprehensive dataset, NWPU Campus, containing 43 scenes, 28 classes of abnormal events, and 16 hours of videos. At present, it is the largest semi-supervised VAD dataset with the largest number of scenes and classes of anomalies, the longest duration, and the only one considering the scene-dependent anomaly. Meanwhile, it is also the first dataset proposed for video anomaly anticipation. We further propose a novel model capable of detecting and anticipating anomalous events simultaneously. Compared with 7 outstanding VAD algorithms in recent years, our method can cope with scene-dependent anomaly detection and anomaly anticipation both well, achieving state-of-the-art performance on ShanghaiTech, CUHK Avenue, IITB Corridor and the newly proposed NWPU Campus datasets consistently. Our dataset and code is available at: https://campusvad.github.io.Comment: CVPR 202

    Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    Get PDF
    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.This work was supported in part by Projects MINECO TEC2011-28626-C02-01/02, by program CENIT-ATLANTIDA (cofinanced by Indra and Boeing R&TE), and by ULPGC Precompetitive Research Project (ULPGC Own Program).Publicad
    • …
    corecore