23,132 research outputs found

    Multi-Threaded Actors

    Get PDF
    In this paper we introduce a new programming model of multi-threaded actors which feature the parallel processing of their messages. In this model an actor consists of a group of active objects which share a message queue. We provide a formal operational semantics, and a description of a Java-based implementation for the basic programming abstractions describing multi-threaded actors. Finally, we evaluate our proposal by means of an example application.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Verifying multi-threaded software using SMT-based context-bounded model checking

    No full text
    We describe and evaluate three approaches to model check multi-threaded software with shared variables and locks using bounded model checking based on Satisfiability Modulo Theories (SMT) and our modelling of the synchronization primitives of the Pthread library. In the lazy approach, we generate all possible interleavings and call the SMT solver on each of them individually, until we either find a bug, or have systematically explored all interleavings. In the schedule recording approach, we encode all possible interleavings into one single formula and then exploit the high speed of the SMT solvers. In the underapproximation and widening approach, we reduce the state space by abstracting the number of interleavings from the proofs of unsatisfiability generated by the SMT solvers. In all three approaches, we bound the number of context switches allowed among threads in order to reduce the number of interleavings explored. We implemented these approaches in ESBMC, our SMT-based bounded model checker for ANSI-C programs. Our experiments show that ESBMC can analyze larger problems and substantially reduce the verification time compared to state-of-the-art techniques that use iterative context-bounding algorithms or counter-example guided abstraction refinement

    On the Impact of Memory Allocation on High-Performance Query Processing

    Full text link
    Somewhat surprisingly, the behavior of analytical query engines is crucially affected by the dynamic memory allocator used. Memory allocators highly influence performance, scalability, memory efficiency and memory fairness to other processes. In this work, we provide the first comprehensive experimental analysis on the impact of memory allocation for high-performance query engines. We test five state-of-the-art dynamic memory allocators and discuss their strengths and weaknesses within our DBMS. The right allocator can increase the performance of TPC-DS (SF 100) by 2.7x on a 4-socket Intel Xeon server

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM
    corecore