3 research outputs found

    FCP-Net: A Feature-Compression-Pyramid Network Guided by Game-Theoretic Interactions for Medical Image Segmentation

    Get PDF
    Medical image segmentation is a crucial step in diagnosis and analysis of diseases for clinical applications. Deep neural network methods such as DeepLabv3+ have successfully been applied for medical image segmentation, but multi-level features are seldom integrated seamlessly into different attention mechanisms, and few studies have explored the interactions between medical image segmentation and classification tasks. Herein, we propose a feature-compression-pyramid network (FCP-Net) guided by game-theoretic interactions with a hybrid loss function (HLF) for the medical image segmentation. The proposed approach consists of segmentation branch, classification branch and interaction branch. In the encoding stage, a new strategy is developed for the segmentation branch by applying three modules, e.g., embedded feature ensemble, dilated spatial mapping and channel attention (DSMCA), and branch layer fusion. These modules allow effective extraction of spatial information, efficient identification of spatial correlation among various features, and fully integration of multireceptive field features from different branches. In the decoding stage, a DSMCA module and a multi-scale feature fusion module are used to establish multiple skip connections for enhancing fusion features. Classification and interaction branches are introduced to explore the potential benefits of the classification information task to the segmentation task. We further explore the interactions of segmentation and classification branches from a game theoretic view, and design an HLF. Based on this HLF, the segmentation, classification and interaction branches can collaboratively learn and teach each other throughout the training process, thus applying the conjoint information between the segmentation and classification tasks and improving the generalization performance. The proposed model has been evaluated using several datasets, including ISIC2017, ISIC2018, REFUGE, Kvasir-SEG, BUSI, and PH2, and the results prove its competitiveness compared with other state-of-the-art techniques

    Automated liver tissues delineation based on machine learning techniques: A survey, current trends and future orientations

    Get PDF
    There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.Comment: 41 pages, 4 figures, 13 equations, 1 table. A review paper on liver tissues segmentation based on automated ML-based technique
    corecore