17 research outputs found

    Benchmarking machine learning models on multi-centre eICU critical care dataset

    Get PDF
    Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and public benchmarks. Recent availability of large clinical datasets has enabled the possibility of establishing public benchmarks. Taking advantage of this opportunity, we propose a public benchmark suite to address four areas of critical care, namely mortality prediction, estimation of length of stay, patient phenotyping and risk of decompensation. We define each task and compare the performance of both clinical models as well as baseline and deep learning models using eICU critical care dataset of around 73,000 patients. This is the first public benchmark on a multi-centre critical care dataset, comparing the performance of clinical gold standard with our predictive model. We also investigate the impact of numerical variables as well as handling of categorical variables on each of the defined tasks. The source code, detailing our methods and experiments is publicly available such that anyone can replicate our results and build upon our work.Comment: Source code to replicate the results https://github.com/mostafaalishahi/eICU_Benchmar

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    Deep Patient Representation of Clinical Notes via Multi-Task Learning for Mortality Prediction.

    Get PDF
    We propose a deep learning-based multi-task learning (MTL) architecture focusing on patient mortality predictions from clinical notes. The MTL framework enables the model to learn a patient representation that generalizes to a variety of clinical prediction tasks. Moreover, we demonstrate how MTL enables small but consistent gains on a single classification task (e.g., in-hospital mortality prediction) simply by incorporating related tasks (e.g., 30-day and 1-year mortality prediction) into the MTL framework. To accomplish this, we utilize a multi-level Convolutional Neural Network (CNN) associated with a MTL loss component. The model is evaluated with 3, 5, and 20 tasks and is consistently able to produce a higher-performing model than a single-task learning (STL) classifier. We further discuss the effect of the multi-task model on other clinical outcomes of interest, including being able to produce high-quality representations that can be utilized to great effect by simpler models. Overall, this study demonstrates the efficiency and generalizability of MTL across tasks that STL fails to leverage
    corecore