327,432 research outputs found

    Intra-Camera Supervised Person Re-Identification

    Get PDF
    Existing person re-identification (re-id) methods mostly exploit a large set of cross-camera identity labelled training data. This requires a tedious data collection and annotation process, leading to poor scalability in practical re-id applications. On the other hand unsupervised re-id methods do not need identity label information, but they usually suffer from much inferior and insufficient model performance. To overcome these fundamental limitations, we propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation. This eliminates the most time-consuming and tedious inter-camera identity labelling process, significantly reducing the amount of human annotation efforts. Consequently, it gives rise to a more scalable and more feasible setting, which we call Intra-Camera Supervised (ICS) person re-id, for which we formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method. Specifically, MATE is designed for self-discovering the cross-camera identity correspondence in a per-camera multi-task inference framework. Extensive experiments demonstrate the cost-effectiveness superiority of our method over the alternative approaches on three large person re-id datasets. For example, MATE yields 88.7% rank-1 score on Market-1501 in the proposed ICS person re-id setting, significantly outperforming unsupervised learning models and closely approaching conventional fully supervised learning competitors

    Intra-Camera Supervised Person Re-Identification: A New Benchmark

    Get PDF
    Existing person re-identification (re-id) methods rely mostly on a large set of inter-camera identity labelled training data, requiring a tedious data collection and annotation process therefore leading to poor scalability in practical re-id applications. To overcome this fundamental limitation, we consider person re-identification without inter-camera identity association but only with identity labels independently annotated within each individual camera-view. This eliminates the most time-consuming and tedious inter-camera identity labelling process in order to significantly reduce the amount of human efforts required during annotation. It hence gives rise to a more scalable and more feasible learning scenario, which we call Intra-Camera Supervised (ICS) person re-id. Under this ICS setting with weaker label supervision, we formulate a Multi-Task Multi-Label (MTML) deep learning method. Given no inter-camera association, MTML is specially designed for self-discovering the inter-camera identity correspondence. This is achieved by inter-camera multi-label learning under a joint multi-task inference framework. In addition, MTML can also efficiently learn the discriminative re-id feature representations by fully using the available identity labels within each camera-view. Extensive experiments demonstrate the performance superiority of our MTML model over the state-of-the-art alternative methods on three large-scale person re-id datasets in the proposed intra-camera supervised learning setting.Comment: 9 pages, 3 figures, accepted by ICCV Workshop on Real-World Recognition from Low-Quality Images and Videos, 201

    Improving Person Re-identification by Attribute and Identity Learning

    Full text link
    Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.Comment: Accepted to Pattern Recognition (PR

    Occluded Person Re-identification

    Full text link
    Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a person's identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.Comment: 6 pages, 7 figures, IEEE International Conference of Multimedia and Expo 201

    Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

    Full text link
    Person Re-identification (ReID) is to identify the same person across different cameras. It is a challenging task due to the large variations in person pose, occlusion, background clutter, etc How to extract powerful features is a fundamental problem in ReID and is still an open problem today. In this paper, we design a Multi-Scale Context-Aware Network (MSCAN) to learn powerful features over full body and body parts, which can well capture the local context knowledge by stacking multi-scale convolutions in each layer. Moreover, instead of using predefined rigid parts, we propose to learn and localize deformable pedestrian parts using Spatial Transformer Networks (STN) with novel spatial constraints. The learned body parts can release some difficulties, eg pose variations and background clutters, in part-based representation. Finally, we integrate the representation learning processes of full body and body parts into a unified framework for person ReID through multi-class person identification tasks. Extensive evaluations on current challenging large-scale person ReID datasets, including the image-based Market1501, CUHK03 and sequence-based MARS datasets, show that the proposed method achieves the state-of-the-art results.Comment: Accepted by CVPR 201
    corecore