2 research outputs found

    Facial expression recognition via a jointly-learned dual-branch network

    Get PDF
    Human emotion recognition depends on facial expressions, and essentially on the extraction of relevant features. Accurate feature extraction is generally difficult due to the influence of external interference factors and the mislabelling of some datasets, such as the Fer2013 dataset. Deep learning approaches permit an automatic and intelligent feature extraction based on the input database. But, in the case of poor database distribution or insufficient diversity of database samples, extracted features will be negatively affected. Furthermore, one of the main challenges for efficient facial feature extraction and accurate facial expression recognition is the facial expression datasets, which are usually considerably small compared to other image datasets. To solve these problems, this paper proposes a new approach based on a dual-branch convolutional neural network for facial expression recognition, which is formed by three modules: The two first ones ensure features engineering stage by two branches, and features fusion and classification are performed by the third one. In the first branch, an improved convolutional part of the VGG network is used to benefit from its known robustness, the transfer learning technique with the EfficientNet network is applied in the second branch, to improve the quality of limited training samples in datasets. Finally, and in order to improve the recognition performance, a classification decision will be made based on the fusion of both branchesā€™ feature maps. Based on the experimental results obtained on the Fer2013 and CK+ datasets, the proposed approach shows its superiority compared to several state-of-the-art results as well as using one model at a time. Those results are very competitive, especially for the CK+ dataset, for which the proposed dual branch model reaches an accuracy of 99.32, while for the FER-2013 dataset, the VGG-inspired CNN obtains an accuracy of 67.70, which is considered an acceptable accuracy, given the difficulty of the images of this dataset

    Unobtrusive hand gesture recognition using ultra-wide band radar and deep learning

    Get PDF
    Hand function after stroke injuries is not regained rapidly and requires physical rehabilitation for at least 6 months. Due to the heavy burden on the healthcare system, assisted rehabilitation is prescribed for a limited time, whereas so-called home rehabilitation is offered. It is therefore essential to develop robust solutions that facilitate monitoring while preserving the privacy of patients in a home-based setting. To meet these expectations, an unobtrusive solution based on radar sensing and deep learning is proposed. The multi-input multi-output convolutional eXtra trees (MIMO-CxT) is a new deep hybrid model used for hand gesture recognition (HGR) with impulse-radio ultra-wide band (IR-UWB) radars. It consists of a lightweight architecture based on a multi-input convolutional neural network (CNN) used in a hybrid configuration with extremely randomized trees (ETs). The model takes data from multiple sensors as input and processes them separately. The outputs of the CNN branches are concatenated before the prediction is made by the ETs. Moreover, the model uses depthwise separable convolution layers, which reduce computational cost and learning time while maintaining high performance. The model is evaluated on a publicly available dataset of gestures collected by three IR-UWB radars and achieved an average accuracy of 98.86%
    corecore