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 Hand function after stroke injuries is not regained rapidly and requires 

physical rehabilitation for at least 6 months. Due to the heavy burden on the 

healthcare system, assisted rehabilitation is prescribed for a limited time, 

whereas so-called home rehabilitation is offered. It is therefore essential to 

develop robust solutions that facilitate monitoring while preserving the 

privacy of patients in a home-based setting. To meet these expectations, an 

unobtrusive solution based on radar sensing and deep learning is proposed. 

The multi-input multi-output convolutional eXtra trees (MIMO-CxT) is a new 

deep hybrid model used for hand gesture recognition (HGR) with impulse-

radio ultra-wide band (IR-UWB) radars. It consists of a lightweight 

architecture based on a multi-input convolutional neural network (CNN) used 

in a hybrid configuration with extremely randomized trees (ETs). The model 

takes data from multiple sensors as input and processes them separately. The 

outputs of the CNN branches are concatenated before the prediction is made 

by the ETs. Moreover, the model uses depthwise separable convolution layers, 

which reduce computational cost and learning time while maintaining high 

performance. The model is evaluated on a publicly available dataset of 

gestures collected by three IR-UWB radars and achieved an average accuracy 

of 98.86%. 
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1. INTRODUCTION 

Hand paralysis occurs in approximately two-thirds of strokes [1], limiting post-stroke survivors from 

performing 80% of activities of daily living (ADLs) [2]. Hand function after stroke injuries is not regained 

rapidly and requires continuous physical rehabilitation for at least 6 months [3]. Due to the high burden on the 

health care system, assisted rehabilitation is primarily prescribed for a limited time, while home-based 

rehabilitation is offered [2]. Achieving the previous level of hand function in a home-based setting can be 

accomplished with appropriate physical therapy and remote assessment techniques. The development of an 

automatic and accurate recording approach for hand gesture recognition (HGR) using sensing technologies and 

artificial systems appears to be a flexible solution. 

Impulse-radio ultra-wide band (IR-UWB) radar has recently emerged as one of the most effective and 

promising non-contact sensors for HGR [4]–[6]. It possesses the convenience of remote operation in a  

non-intrusive manner, granting users a sense of freedom and unrestraint. It provides a cost-effective and durable 

solution, characterized by low power consumption and excellent performance in both brightly lit and dark 

environments. Furthermore, it effectively overcomes the issue of occlusion by exhibiting remarkable 

https://creativecommons.org/licenses/by-sa/4.0/
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penetration capabilities through obstacles and walls. Alongside it is numerous benefits, IR-UWB radar also 

offers valuable insights, including range and velocity information, enabling precise detection of hand motion 

with exceptional accuracy. However, its vulnerability to orientation variations is a concern. This vulnerability 

becomes apparent in situations where the perception of IR-UWB radar becomes uncertain due to unfavorable 

aspect angles between the motion path and the radar line of sight [7]. This uncertainty makes it impractical to 

rely solely on a single sensor. To differentiate gestures more effectively, the recognition system incorporates 

multiple sensors [8]. By combining data from multiple IR-UWB radar or other sensors, more concise 

information is added [7], [9]. In case of missing or unreliable data provided by one sensor, the fusion model 

can still make informed decisions based on the data provided by the other sensors. This integration enhances 

the robustness of the system, making it more resistant to sensor failures. It also reduces ambiguity and 

uncertainty while boosting confidence. 

Standard deep models, including convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), have been successfully applied to HGR using single-sensor data [10]–[17]. Their 

sophisticated structure allows them to work directly on raw data as they involve automatic feature detection 

and extraction. However, these standard models are designed to process data with consistent patterns under a 

single input and neglect the fusion mechanism. Consequently, using a set of radars to detect hand gestures can 

be difficult when using standard deep models. This difficulty is mainly due to the varying characteristics of the 

captured hand gestures. Different mounting configurations, including height, angle, and distance between radar 

and target, can affect the radar’s field of view and spatial coverage, thus influencing the radar signal and 

capturing different aspects of the same gesture. Standard deep models may struggle to capture the full range of 

variation and learn how to integrate information from a variety of sensor sources efficiently. Therefore, the 

architecture of standard deep models should be appropriately designed to accommodate multiple data sources. 

Data from each sensor has to be processed separately to capture and preserve the relevant features 

independently and merge the information properly. However, it is important to mention that the separate 

processing of multiple sensor data requires more complex and higher-capacity models. Therefore, it is crucial 

to strike a balance between model complexity and desired performance [18]. 

The present paper proposes a novel multi-input multi-output (MIMO) approach based on the 

integration of extremely randomized trees (ETs) with CNN for HGR using IR-UWB sensors. Our proposed 

model does not require heavy data preprocessing or manual feature engineering. It eliminates the dependency 

on expert experience and prior knowledge. By leveraging the advantages offered by both CNN and ETs, we 

have developed a complete and effective model capable of automatically extracting discriminative features and 

producing more accurate results. To the best of our knowledge, MIMO architectures have not yet been used 

for the classification of hand gestures using IR-UWB radar. Unlike previous works where multiple sensor data 

were processed together [19]–[22], our multi-input multi-output convolutional eXtra trees (MIMO-CxT) can 

take data from multiple sensors as input and process them independently. The output of each CNN branch is 

combined before the prediction is made by the ETs. This process improves the feature extraction operation. By 

focusing on the data from each sensor separately, the ability to detect deeper and more useful patterns is 

increased. Processing data in parallel can effectively help extract complementary information about the same 

target across multiple sensors, allowing for a more comprehensive representation to be learned and a more 

efficient classifier to be obtained. In addition to its encouraging performance, our model has fewer parameters, 

which alleviates the computational complexity and cost issues. This makes it highly suitable for the 

development of an embedded radar-based HGR system that can be used as a telemedicine tool designed for the 

remote rehabilitation of stroke patients. 

The paper’s content is arranged as follows: section 2 describes the proposed model architecture and 

provides details about the experimental setup. Section 3 discusses the results obtained in the experimentation 

and presents a comparative analysis of the proposed model’s performance. Section 4 concludes the paper and 

presents an outlook on possible future works. 

 

 

2. METHOD  

2.1.   MIMO-CxT for multi-sensor systems 

Several studies have demonstrated the effectiveness of using multiple IR-UWB radars or combining 

them with other sensors to increase the detection and classification performance of HGR [19], [20], [23]. Often, 

these sensors operate independently of each other, which means that they may capture data of different values, 

scales, or even natures in the case of heterogeneous sensor systems. It is therefore reasonable to process them 

separately in order to extract discriminative features from each sensor’s data and preserve their characteristics 

without altering them. The MIMO-CxT consists of three parallel CNN branches used in a hybrid configuration 

with ETs backend. Unlike the standard CNN model, which mixes and processes the entire data at once, our 

model is designed to perform the feature extraction operation on the data of a certain sensor in each branch 
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independently. The outputs of all parallel CNN branches are concatenated, put in vector form, and fed to the 

ETs, which act as the classifier of the architecture. The structure of the MIMO-CxT is depicted in Figure 1.  

 

 

 
 

Figure 1. Architecture of the MIMO-CxT model 

 

 

2.2.  Multi-input CNN structure 

A similar layer configuration is adopted between the three CNN branches, where each branch consists 

of an input layer of size 75×75×1, corresponding to a single channel of the 75×75 input binary image. Table 1 

provides a more detailed description of the structure of the three CNN branches. One of our objectives is to 

design an efficient network that reduces the amount of computation and the number of network parameters as 

much as possible without compromising classification performance. To achieve this, we propose the use of 

depthwise separable convolution. Unlike conventional convolution, which performs channel-wise and  

spatial-wise computations in one step, depthwise separable convolution factorizes the computation into two 

steps: depthwise convolution followed by pointwise convolution. 

 

 

Table 1. Single CNN branch structure 
Type Filter shape Padding Strides Parameters Output shape 

Input layer - - - 0 (None, 75, 75, 1) 

SeparableConv2D 4×4×64 Same 2×2 144 (None, 38, 38, 64) 

Maxout 64 - - 0 (None, 38, 38, 64) 
MaxPooling2D 2×2 - - 0 (None, 19, 19, 64) 

Dropout 0.25 - - 0 (None, 19, 19, 64) 

SeparableConv2D 4×4×64 Same 2×2 5184 (None, 10, 10, 64) 
Maxout 64 - - 0 (None, 10, 10, 64) 

MaxPooling2D 2×2 - - 0 (None, 5, 5, 64) 

Dropout 0.25 - - 0 (None, 5, 5, 64) 
SeparableConv2D 4×4×64 Same 2×2 5184 (None, 3, 3, 64) 

Maxout 64 - - 0 (None, 3, 3, 64) 

MaxPooling2D 2×2 - - 0 (None, 1, 1, 64) 
Dropout 0.25 - - 0 (None, 1, 1, 64) 

 

 

The depthwise convolution takes an input feature map F with a size of 𝑊𝑖𝑛×𝐻𝑖𝑛×𝑀 (width, height, 

and number of filters) and generates an output feature map O with a size of 𝑊𝑜𝑢𝑡×𝐻𝑜𝑢𝑡×𝑁. It performs spatial 

convolution independently over every channel of the input, using a convolutional kernel 𝐾 with a size filter of 

𝑊𝐾×𝐻𝐾×𝑀 × 𝑁. The depthwise convolution can be expressed as (1). 

 

�̂�𝑘,𝑙,𝑚  ∑ 𝐾𝑖,𝑗,𝑚,𝑛�̂�𝑘+𝑖−1,𝑙+𝑗−1,𝑚𝑖𝑗  (1) 

 

Next, the pointwise convolution is performed using a filter 𝐾 with a size of 1×1 to combine the total generated 

output. 

 

�̂�𝑘,𝑙,𝑛 =  ∑ 𝐾𝑚,𝑛�̂�𝑘−1,𝑙−1,𝑚𝑖𝑗  (2) 
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The combination of depthwise and pointwise significantly reduces the number of network parameters, 

eliminating a large chunk of multiplication, resulting in a faster model for training and execution. Additionally, 

this combination ensures the classification accuracy of the model, making it less prone to overfitting. After 

each depthwise separable convolution layer, a Maxout layer is inserted. The Maxout layer is known for its 

effectiveness when trained with Dropout and for its robustness in improving network capacity. The Maxout 

activation function can be expressed as (3), 

 

𝑓(𝑥) = 𝑚𝑎𝑥𝑗∈[1,𝑘]𝑍𝑖𝑗 (3) 

 

where 𝑍𝑖𝑗=𝑥𝑇𝑊ij+𝑏𝑖𝑗 , with x representing the input variables, W representing the weights, and b representing 

the biases. The model also incorporates a MaxPooling2D layer followed by a Dropout layer with a value of 

25%. The outputs of the three CNN branches are concatenated, then flattened to form a vector of features, 

which is then passed through a dense layer with 50 units followed by a dropout of 40%. 

 

2.3.  Extremely randomized trees  

Decision tree (DT) based ensemble methods aim to improve predictive performance by combining 

the outputs of multiple trees [24]. However, it is necessary to consider that the individual trees must be accurate 

and distinct from each other to obtain a more stable and robust classifier [24]. This can be achieved by using 

the randomization process, which helps reduce correlation and allows the trees to grow with greater diversity. 

ETs consist of a completely random and independent set of DTs, constructed using random subsets of features 

to minimize overfitting [24]. They make predictions about a target variable based on a sequence of rules defined 

in a forest-like structure. The implementation steps of ETs can be summarized as follows: Given a training 

dataset 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥𝑖}, where a sample 𝑥1 =  {𝑓1, 𝑓2, . . . , 𝑓𝐷} is a D-dimensional vector with 𝑓𝑗 as the 

feature and j ∈ {1, 2, ..., D}. Three important parameters required for Extra-Trees are: the number of trees M, 

the number of randomly selected attributes K at each node, and the minimum sample size nmin required to split 

a node. 

a) A DT is constructed, consisting of a root node, split nodes, and leaf nodes. Starting with the root node, the 

DT grows in a top-down fashion, using entire training sample. 

b) At each internal node, the DT randomly selects K features {𝑓1, 𝑓2, . . . , 𝑓𝐾}. For each feature k within the 

subset, its maximum and minimum values, fkmax and fkmin, are calculated. The optimal split value (cut 

point), which has the maximum variance reduction capabilities, is then selected from the range [fkmin, 

fkmax]. In detail, we use entropy as the score function, where the best split is determined by the feature 

with the least entropy and remains constant while the tree grows. Entropy is calculated using the (4), 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑡𝑡 . 𝑙𝑜𝑔2(𝑝𝑡) (4) 

 

where 𝑝𝑡  represents the probability of class t. 

c) Iteratively, the subsets are split, and the trees are expanded until only pure nodes remain in terms of outputs 

or a minimum number of training samples needed for splitting (nmin) is reached. This concludes the 

partitioning process and creates a leaf node, which predicts the class label. 

d) Steps (a), (b), and (c) are repeated M times, generating an extreme random tree model composed of M 

independent DTs. 

e) Finally, by aggregating the predictions of the M trees, the final classification result is obtained through 

majority voting of each class at the leaf nodes. 

Among various tree-based classification methods, there are several reasons why ETs are the most 

suitable choice for this paper. Firstly, the extreme randomization scheme of the ETs algorithm makes it 

significantly faster and more efficient in terms of training time. Secondly, using the full training set to train 

individual trees contributes to its strong generalization capability. The ensemble nature of ETs allows for the 

aggregation of diverse decision trees, each trained on a different subset of the data. This diversity helps improve 

the overall performance and robustness of the algorithm. Lastly, an advantage of using ETs is that their 

implementation does not heavily rely on hyperparameter tuning. ETs offer a more straightforward approach 

with less emphasis on hyperparameter selection. 

 

2.4.  Dataset 

To validate the effectiveness of the MIMO-CxT presented in this study, we use a public dataset known 

as the UWB Gestures dataset, proposed by Ahmed et al. [11]. This dataset was acquired from 8 volunteers with 

an average age of 25.75 years using three XeThru X4 IR-UWB radars. As shown in Figure 2, the radars were 

positioned at three different locations: left, top, and right, and operated independently. Each volunteer was 

instructed to perform 12 predetermined gestures 100 times each. These gestures include left-right (LR) swipe, 
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right-left (RL) swipe, up-down (UD) swipe, down-up (DU) swipe, diagonal (diag)-LR-UD swipe, diag-LR-

DU swipe, diag-RL-UD swipe, diag-RL-DU swipe, clockwise rotation, anti-clockwise rotation, inward push, 

and an empty gesture. In total, the dataset contains 288,000 RGB images that represent the range variation over 

time for each gesture. 

 

 

  
 

Figure 2. Diagram of radars location 

 

 

2.5.  Performance measures 

In order to analyze the performance of our proposed model, various metrics have been used, including 

accuracy, precision, recall, and F1-score, defined by (5) to (8), respectively. These metrics are based on true 

positives T𝑃, true negatives T𝑁, false positives F𝑃, and false negatives F𝑁. Additionally, we have used graphical 

approach including precision-recall curve (PR) and receiver operating characteristic curve (ROC). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑃+𝐹𝑃
  (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑃+𝐹𝑁
  (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑝

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (8) 

 

2.6.  Implementation details 

The model is implemented in Python using the Keras framework with TensorFlow backend. The 

hardware configuration is based on an Intel(R) Core (TM) i5 @ 2.40 GHz CPU, 16 GB of RAM, 1TB of hard 

disk, and Windows 10. All samples in the dataset were resized to 75×75 and converted to binary images as 

shown in Figure 3. The reasons for using binary images are faster inference, avoidance of unnecessary pre-

processing, and lower storage requirements. Next, the converted samples were randomly split into 80% for 

training and 20% for testing. Additionally, the random seed parameter is used to ensure consistent test samples 

in each experiment. The Adam optimizer is used with a learning rate set to 0.001. The input labels are provided 

as integers; therefore, we use the sparse categorical cross-entropy loss function. This choice helps save memory 

and computation time compared to using vectors to encode the labels. To achieve optimal performance, the 

ETs hyperparameter settings are selected during the training process using the Optuna framework [25]. 

 

 

 
 

Figure 3. Example of binarized samples from the UWB Gestures dataset 
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3. RESULTS AND DISCUSSION 

3.1.   Results  

3.1.1. Training process 

The training process is conducted from scratch and can be divided into three main steps. Firstly, a 

CNN-Softmax model is used, where each CNN branch is fed with data from a specific sensor. Secondly, the 

CNN is trained with 15 epochs with different batch sizes. Finally, Softmax is replaced by the ETs classifier, 

which is fed with the extracted and merged features from the multiple CNN branches for classification. The 

results showed that the performance of the MIMO-CxT improves with smaller batch sizes. The best training 

accuracies were obtained with a batch size of 8 and 16. However, a batch size of 16 required relatively less 

training time compared to batch size of 8, and was therefore selected for the remaining experiments. Table 2 

summarizes the results obtained for the different batch sizes. 

 

 

Table 2. Train accuracy using different batch size 
Metrics Batch size 

 8 16 32 64 128 

Train Accuracy (%) 99.67  99.55 99.30 99.21 98.98 

 

 

Next, the MIMO-CxT is retrained using a batch size of 16 with the Optuna optimizer to fine-tune its 

hyperparameters. These hyperparameters include max depth, max features, min sample split, min samples leaf, 

n estimators, and max leaf nodes. Table 3 summarizes the optimal values for these hyperparameters. The best 

MIMO-CxT model achieved an accuracy of 99.7%, as shown in the optimization history plot in Figure 4. 

 

 

Table 3. ETs hyperparameters 
Hyperparameter Value 

max_depth 10 

max_features 10 

n_estimators 700 

min_samples_leaf 5 

min_samples_split 5 

 

 

 
 

Figure 4. Optimization history plot 

 

 

3.1.2. Evaluation process 

For performance evaluation, the MIMO-CxT model configuration is used, along with the 

hyperparameters specified in Table 2. The results obtained on the test data are depicted in Figure 5, with the 

confusion matrix presented in Figure 5(a) and the classification report is presented in Figure 5(b). Although 

the obtained results are excellent, we also examine graphical approaches illustrated in Figure 6, including the 

PR curve presented in Figure 6(a) and the ROC presented in Figure 6(b).  

 

3.1.3. Comparisons 

a.  Verification of data concatenation method 

To demonstrate the feasibility and superiority of the proposed model, two different experiments were 

conducted. Firstly, the same model was fed with a single input from each sensor separately. Secondly, the single 

input model was fed with data from all three sensors simultaneously. Finally, the performance of these approaches 

was compared with the MIMO-CxT model. The results of these experiments are summarized in Table 4. 
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(a) (b) 

 

Figure 5. Classification performance of the MIMO-CxT on the test set (a) confusion matrix and  

(b) classification report 

 

 

  
(a) (b) 

 

Figure 6. Graphical plots of MIMO-CxT on the test set: (a) ROC curve and (b) PR curve 

 

 

Table 4. Comparative classification performance single/multiple inputs model 
Metrics Single-input multi-output CxT MIMO-CxT 

Left Top Right Left+Top+Right 

Train accuracy (%) 88.86 85.65 86.76 78.91 99.70 

Test accuracy (%) 81.52 75.26 80.95 72.70 98.86 
Precision (%) 82.14 76.21 80.43 73.62 98.90 

Recall (%) 81.52 75.26 80.09 73.70 98.86 

F1-score (%) 81.68 75.31 80.07 72.66 98.85 

 

 

b.  Verification of data preprocessing 

In order to assess the effectiveness of utilizing binary images compared to RGB images, the  

MIMO-CxT model was trained and tested on both types of images. A comprehensive analysis was conducted, 

considering factors such as classification performance, model complexity, and computation times. The results 

of this evaluation are presented in Table 5. 

 

 

Table 5. Comparative classification performance RGB/Binary images 
Metrics RGB images Binary images 

Train Accuracy (%) 98.73 99.70 
Test Accuracy (%) 97.19 98.86 

Precison (%) 97.23 98.90 

Recall (%) 97.15 98.86 
F1-score (%) 97.21 98.85 

CNN parameters 32016 31536 

Training time (s) 527.5141 450.3863 

Prediction time (s) 2.7767 1.9582 
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c.  Comparison to existing models 

The third experiment aims to compare the performance of different classifiers against ETs when used 

in a hybrid configuration with a multi-input CNN. Additionally, as the first paper to propose a multi-input 

model for HGR with IR-UWB radar, we compared our model with single-input models used in the same context 

and multi-input models proposed in the literature. Table 6 summarizes the results obtained from different 

models trained on the public UWB Gestures dataset. 

 

 

Table 6. Comparative classification performance of the MIMO-CxT over existing approaches  
 Model Train accuracy (%) Test accuracy (%) 

Single-input Four-layer CNN [11] 90.47 78.90 

 Six-layer CNN [10] 96.94 87.63 

 Three-input CNN [26] 98.94 97.37 
 MIMO-CNNLSTM 96.11 97.79 

Multi-input MIMO-CNNSoftmax 97.14 97.99 

 Multi-stream CNN [27] 98.93 98.15 

 MIMO-CNNSVM 98.94 98.18 

Our proposed model MIMO-CxT 99.70 98.86 

 

 

3.2.  Discussion  

Employing multi-sensor systems for HGR offers numerous advantages such as increased accuracy, 

robustness, the ability to capture complex gestures, versatility, and adaptability to different needs. These 

benefits make multi-sensor systems preferable over single-sensor solutions. However, it is important to 

consider a solution capable of efficiently handling and integrating information from a variety of sensor sources. 

To address this, we present MIMO-CxT, an end-to-end hybrid deep learning approach for HGR based on multi-

sensor systems. 

The first experiment was conducted to analyze the performance of the model based on how the sensor 

data features are extracted: i) separately, ii) together, or iii) independently in parallel. Table 4 shows that the 

multiple-input model is able to recognize gestures much better than the single-input model in all tested 

scenarios. One of the main reasons for this improvement is the quantity of extracted features. It is evident that 

the multiple-input model achieves a high recognition rate due to its ability to extract and merge more diverse 

information concerning the same gesture across multiple sensors. Furthermore, we observed a significant 

difference in the model’s performance when processing all data simultaneously and independently in parallel. 

We hypothesize that the reason for this poor performance is the presence of common features. Although the same 

gesture is represented differently by the three sensors, there is a strong similarity between the signals of different 

gestures. For example, the RL swipe of the left radar with the DU swipe of the top radar from Figure 3. This 

similarity in features between different gestures leads to confusion for the model and makes it error-prone. In 

addition, the single-input architecture is slower to converge and requires a significant amount of time for training. 

From the first experiment, we can reasonably conclude that processing data from multiple sensors in parallel and 

fusing their extracted features greatly improves the recognition rate while requiring less training time.  

We conducted a second experiment in which we compared the performance of the model based on the 

image processing technique adopted in our work. Table 5 shows that using binary images results in lower 

inference and prediction times compared to red green blue (RGB) images. Using binary images helps filter out 

unnecessary information while retaining the main features of the gestures. Moreover, it reduces the number of 

trainable parameters while maintaining high model performance. Therefore, implementing our model does not 

require powerful computing hardware. 

The same experiment was carried out on single/multiple input models already proposed in the 

literature, and the results are shown in Table 6. Comparing the performance of the single-input four-layer CNN 

[11] and six-layer CNN [10] models against MIMO-CxT, it is evident that the latter outperforms in terms of 

test accuracy and generalizability. Standard CNNs are designed for extracting features from a single input, 

which may result in insufficient capacity to capture the full range of data variations between different sensors. 

However, the implementation of MIMO-CxT with a multi-branch structure overcomes this limitation. The 

multi-branch structure acts as a regularizer, allowing the model to effectively capture the diverse variations 

present in the data. By utilizing different branches, the model can learn more robust and discriminative 

representations, ultimately leading to improved classification performance. The results were significantly 

improved with the use of multiple-input models. However, MIMO-CxT has several advantages compared to 

the models proposed in the literature. MIMO-CxT achieved an increase in accuracy of 1.49% and 0.71% when 

compared to the three-input CNN [26] and the multi-stream CNN [27], respectively. Both models [26], [27] 

have a deeper and more complex architecture than ours. They both use a large number of convolutional filters 

and several fully connected layers with a large number of units. This considerably increases the number of 
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trainable parameters, which in turn increases training time. We can also notice that combining CNN with LSTM 

slightly increases accuracy but still falls short of that achieved by MIMO-CxT. Taking into account the 

complex architecture with the sequential nature of the long short-term memory (LSTM), ETs are easy to 

implement and computationally more efficient. The training and inference times of ETs are faster, especially 

for large datasets. This computational efficiency is beneficial when working with real-time or near-real-time 

predictions. Although Softmax is a powerful classifier, the utilization of ETs enhanced accuracy by 0.86%. 

This improvement can be primarily attributed to the implementation of ensemble learning techniques by ETs. 

Employing individual trees enables the capture and learning of distinct information, while aggregating 

predictions from multiple trees leads to more reliable predictions. Using ETs as the final classifier yielded 

similar performance compared to support vector machine (SVM). However, ETs are inherently well-suited for 

multiclass classification tasks. Contrary to SVM, ETs can handle them directly without having to reduce them 

to several binary classification problems. Furthermore, ETs tend to be more scalable than SVM, especially 

when dealing with a large number of data points. The computational complexity of SVM grows rapidly as the 

number of data points increases. 

In conclusion, ETs are an obvious choice for the proposed model to perform HGR. The results 

presented in Tables 4 to 6 indicate that the proposed MIMO-CxT model effectively recognizes multiple sensor-

based gestures and outperforms existing approaches. MIMO-CxT, with its implementation of ETs, achieves 

good generalization performance while requiring fewer parameters. This implies that the model can efficiently 

classify and differentiate various hand gestures based on the acquired sensory signals from IR-UWB sensors. 

 

 

4. CONCLUSION  

Considering the high prevalence of upper limb paralysis after stroke, as well as the heavy burden on 

the healthcare system, there is a need for accurate and cost-effective telemedicine tools designed for the remote 

rehabilitation of stroke patients. To address this problem, we proposed a novel deep hybrid model, named 

MIMO-CxT, for HGR. The proposed architecture leverages the robustness of CNN to capture both shallow 

and deep features, as well as the simplicity and strong generalization capability of ETs for data classification. 

The advantages of the MIMO-CxT model include multi-source input, fast computational speed, low cost, and 

high generalization performance. The results were compared with those of conventional approaches, and it was 

found out that our model performs significantly better. Based on the performance of the MIMO-CxT, it can be 

considered as a promising solution to assist medical professionals as a home-based online monitoring tool for 

stroke patients. Future research in this field may explore other image processing and optimization techniques. 

Additionally, we plan to evaluate the proposed model on other recognition tasks, such as human activity. 
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