81 research outputs found

    A new framework for extracting coarse-grained models from time series with multiscale structure

    Full text link
    In many applications it is desirable to infer coarse-grained models from observational data. The observed process often corresponds only to a few selected degrees of freedom of a high-dimensional dynamical system with multiple time scales. In this work we consider the inference problem of identifying an appropriate coarse-grained model from a single time series of a multiscale system. It is known that estimators such as the maximum likelihood estimator or the quadratic variation of the path estimator can be strongly biased in this setting. Here we present a novel parametric inference methodology for problems with linear parameter dependency that does not suffer from this drawback. Furthermore, we demonstrate through a wide spectrum of examples that our methodology can be used to derive appropriate coarse-grained models from time series of partial observations of a multiscale system in an effective and systematic fashion

    Stochastic Differential Equations with Variational Wishart Diffusions

    Full text link
    We present a Bayesian non-parametric way of inferring stochastic differential equations for both regression tasks and continuous-time dynamical modelling. The work has high emphasis on the stochastic part of the differential equation, also known as the diffusion, and modelling it by means of Wishart processes. Further, we present a semi-parametric approach that allows the framework to scale to high dimensions. This successfully lead us onto how to model both latent and auto-regressive temporal systems with conditional heteroskedastic noise. We provide experimental evidence that modelling diffusion often improves performance and that this randomness in the differential equation can be essential to avoid overfitting.Comment: ICML 202

    Semi-Parametric Drift and Diffusion Estimation for Multiscale Diffusions

    Full text link
    We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation describing the dynamics on the longer diffusive time scale, i.e. in a homogenization framework. We examine the case where both the drift and the diffusion coefficients in the effective dynamics are space-dependent and depend on multiple unknown parameters. It is known that classical estimators, such as Maximum Likelihood and Quadratic Variation of the Path Estimators, fail to obtain reasonable estimates for parameters in the effective dynamics when based on observations of the underlying multiscale diffusion. We propose a novel algorithm for estimating both the drift and diffusion coefficients in the effective dynamics based on a semi-parametric framework. We demonstrate by means of extensive numerical simulations of a number of selected examples that the algorithm performs well when applied to data from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively to obtain accurate and unbiased estimates.Comment: 32 pages, 10 figure

    Weak symmetries of stochastic differential equations driven by semimartingales with jumps

    Get PDF
    Stochastic symmetries and related invariance properties of \ufb01nite dimensional SDEs driven by general c`adl`ag semimartingales taking values in Lie groups are de\ufb01ned and investigated. The considered set of SDEs, \ufb01rst introduced by S. Cohen, includes a\ufb03ne and Marcus type SDEs as well as smooth SDEs driven by L\ub4evy processes and iterated random maps. A natural extension to this general setting of reduction and reconstruction theory for symmetric SDEs is provided. Our theorems imply as special cases non trivial invariance results concerning a class of a\ufb03ne iterated random maps as well as (weak) symmetries for numerical schemes (of Euler and Milstein type) for Brownian motion driven SDEs
    • …
    corecore