1,613 research outputs found

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Multi-client distributed blind quantum computation with the Qline architecture

    Full text link
    Universal blind quantum computing allows users with minimal quantum resources to delegate a quantum computation to a remote quantum server, while keeping intrinsically hidden input, algorithm, and outcome. State-of-art experimental demonstrations of such a protocol have only involved one client. However, an increasing number of multi-party algorithms, e.g. federated machine learning, require the collaboration of multiple clients to carry out a given joint computation. In this work, we propose and experimentally demonstrate a lightweight multi-client blind quantum computation protocol based on a novel linear quantum network configuration (Qline). Our protocol originality resides in three main strengths: scalability, since we eliminate the need for each client to have its own trusted source or measurement device, low-loss, by optimizing the orchestration of classical communication between each client and server through fast classical electronic control, and compatibility with distributed architectures while remaining intact even against correlated attacks of server nodes and malicious clients

    Ideal quantum protocols in the non-ideal physical world

    Get PDF
    The development of quantum protocols from conception to experimental realizations is one of the main sources of the stimulating exchange between fundamental and experimental research characteristic to quantum information processing. In this thesis we contribute to the development of two recent quantum protocols, Universal Blind Quantum Computation (UBQC) and Quantum Digital Signatures (QDS). UBQC allows a client to delegate a quantum computation to a more powerful quantum server while keeping the input and computation private. We analyse the resilience of the privacy of UBQC under imperfections. Then, we introduce approximate blindness quantifying any compromise to privacy, and propose a protocol which enables arbitrary levels of security despite imperfections. Subsequently, we investigate the adaptability of UBQC to alternative implementations with practical advantages. QDS allow a party to send a message to other parties which cannot be forged, modified or repudiated. We analyse the security properties of a first proof-of-principle experiment of QDS, implemented in an optical system. We estimate the security failure probabilities of our system as a function of protocol parameters, under all but the most general types of attacks. Additionally, we develop new techniques for analysing transformations between symmetric sets of states, utilized not only in the security proofs of QDS but in other applications as well

    Quantum Information Protocols with Gaussian States of Light

    Get PDF

    Photonic quantum information processing: a review

    Full text link
    Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor changes and extended bibliograph

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47
    corecore