8,335 research outputs found

    Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoulli Filter

    Full text link
    The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tracking within the LMB filter. The proposed method uses a task-driven cost function in which both the state estimation errors and cardinality estimation errors are taken into consideration. Simulation results demonstrate that the proposed method can successfully guide a mobile sensor in a challenging multi-target tracking scenario

    Regional variance for multi-object filtering

    Get PDF
    Recent progress in multi-object filtering has led to algorithms that compute the first-order moment of multi-object distributions based on sensor measurements. The number of targets in arbitrarily selected regions can be estimated using the first-order moment. In this work, we introduce explicit formulae for the computation of the second-order statistic on the target number. The proposed concept of regional variance quantifies the level of confidence on target number estimates in arbitrary regions and facilitates information-based decisions. We provide algorithms for its computation for the Probability Hypothesis Density (PHD) and the Cardinalized Probability Hypothesis Density (CPHD) filters. We demonstrate the behaviour of the regional statistics through simulation examples

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Multi-Bernoulli Sensor-Control via Minimization of Expected Estimation Errors

    Full text link
    This paper presents a sensor-control method for choosing the best next state of the sensor(s), that provide(s) accurate estimation results in a multi-target tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy
    corecore