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Regional Variance for Multi-Object Filtering
Emmanuel Delande, Murat Üney, Member, IEEE, Jérémie Houssineau, and Daniel E. Clark, Member, IEEE

Abstract—Recent progress in multi-object filtering has led to al-
gorithms that compute the first-order moment of multi-object dis-
tributions based on sensor measurements. The number of targets
in arbitrarily selected regions can be estimated using the first-order
moment. In this work, we introduce explicit formulae for the com-
putation of the second-order statistic on the target number. The
proposed concept of regional variance quantifies the level of con-
fidence on target number estimates in arbitrary regions and fa-
cilitates information-based decisions. We provide algorithms for
its computation for the probability hypothesis density (PHD) and
the cardinalized probability hypothesis density (CPHD) filters. We
demonstrate the behaviour of the regional statistics through simu-
lation examples.

Index Terms—Multi-object filtering, higher-order statistics,
PHD filter, CPHD filter, random finite sets, Bayesian estimation,
target tracking.

I. INTRODUCTION

M ULTI-TARGET tracking dates back to the 1970s due to
the requirement for aerospace or ground-based surveil-

lance applications [1], [2] and involves estimating the states of
a time varying number of targets using sensor measurements
[3]. The Finite Set Statistics (FISST) methodology [4] provides
an alternative to the conventional approaches [3] in which tar-
gets are described as individual tracks, by modelling the col-
lection of target states as a (simple) point process or Random
Finite Set (RFS). In particular, the collection of target states is
a set whose size—the number of targets—and elements—the
states—are both random.
Multi-target RFS models lead to the well known Bayesian

recursions for filtering sensor observations thereby providing
a coherent Bayesian framework. In the most general case,
however, these recursions are not tractable for an increasing
number of targets [4]. Instead, the FISSTmethodology provides
a systematic approach for approximating the Bayes optimal
filtering distribution through its incomplete characterisations.
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Mahler’s Probability Hypothesis Density (PHD) [5] and Car-
dinalized Probability Hypothesis Density (CPHD) [6] filters
focus primarily on the extraction of the first moment density
(also known as the intensity or the Probability Hypothesis Den-
sity) of the posterior RFS distribution, a real-valued function
on the state space whose integral in any region provides the
mean target number inside [5]. A more recent filter [7] has
been developed in order to propagate the full posterior RFS
distribution under specific assumptions on the target behaviour.
In this article, we are concerned with the second-order infor-

mation on the local target number in an arbitrary region , which
gives a measure of uncertainty associated with the mean target
number. The quantification of the confidence on thefirstmoment
density is useful for problems involved with information-based
decision such as distributed sensing [8]–[10], and multi-sensor
estimation and control [11]–[14]. For example, providing the
uncertainty in the target number in twodistinct regions of interest
of the state space would help the operator determine the region
where the information gathered by the sensing system is less
reliable, and thus where sensing resources should be focused in
priority. We propose a unified description for the first and the
second-order regional statistics and derive explicit formulae
for the mean target number and the variance in target number.
The mathematical framework we introduce builds upon recent
developments in multi-object modelling and filtering [15]–[17]
and has the potential of leading to the derivations of closed form
expressions for regional higher-order statistics of RFS distribu-
tions. Previous studies [6], [18], [19]—or more recently [20] for
sensor management purposes—have investigated higher-order
statistics in target number, but evaluated in the whole state
space and not in any arbitrary region. We provide algorithms
for the computation of the regional variance using both the
PHD and the CPHD filters.
The structure of the article is as follows: Section II provides

background on point processes and multi-object filtering, and
introduces the regional variance in target number. In Section III,
we discuss the principles underpinning the PHD and CPHD fil-
ters before we give the details on constructing the regional sta-
tistics for the PHD and the CPHD filters, the main results of
this article. In Section IV we demonstrate the proposed concept
through simulation examples and then we conclude (Section V).
The proofs of the results in Section III are in Appendices A and
B. The computational procedures are given in Appendix C.

II. POINT PROCESSES AND MULTI-OBJECT FILTERING

In this section, we introduce background and notation used
throughout this article. We first give a brief review of point
processes (Section II-A) and define the regional statistics
(Section II-B). In Section II-C we introduce the functional
differential that is used to extract the regional statistics of point
processes from their generating functionals, which are covered
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in Section II-D. Section II-E overview the Bayesian framework
from which the PHD and CPHD filters are constructed.

A. Point Processes

In this article, the objects of interest—the targets—have in-
dividual states in some target space , typically con-
sisting of position and velocity variables. The multi-object fil-
tering framework focuses on the target population rather than
individual targets. Both the target number and the target states
are unknown and (possibly) time-varying. So, we describe the
target population by a point process whose number of ele-
ments and element states are random. A realisation of a point
process is a set of points depicting a spe-
cific multi-target configuration.
More formally, a point process on is a measurable

mapping:

(1)

from some probability space , where is the sample
space, is the -algebra on , and is the probability mea-
sure on , to the measurable space , where is
the point process state space, i.e., the space of all the finite sets
of points in , and is the Borel -algebra on [21]. We
describe by its probability distribution on gener-
ated by , denoted by (as in the study of random variables).
The probability density of the point process , if it exists, is
the Radon-Nikodym derivative of the probability measure
with respect to (w.r.t.) the reference measure.
The Finite Set Statistics methodology for target tracking [6]

considers the representation of RFSs through a multi-object
density derived from . This approach has the distinctive
merit of producing more intuitive and accessible results facil-
itating rather direct derivations of filtering algorithms such as
the PHD filter [5]. However, the regional variance in target
number does not necessarily admit a density, in the general
case. Therefore, we chose to adopt a measure-theoretical
formulation, based on more general representations of point
processes [21], [22], out of practical necessity. A thorough
discussion on the relation between measures and associated
densities can be found in [23], [24].

B. Regional Statistics: Mean and Variance in Target Number

Unlike real-valued random variables, the space of point pro-
cesses is not endowed with an expectation operator from which
various statistical moments could be derived. Recall from the
definition (1) of a point process that two realisations

are sets of points. Since the sum of two sets (e.g.,
) is ill-defined, so would be the “usual” expectation

operator on point processes.
Nevertheless, point processes can alternatively be described

by the point patterns they produce in the target state space
rather than by their realisations in the process state space
(see Fig. 1). For any Borel set , where is the Borel
-algebra on , the integer-valued random variable

(2)

counts the number of targets falling inside according to the
point process [21]. Using the well-defined statistical moments

Fig. 1. Point process and counting measure. The point process maps an ele-
ment in the sample space into a set of points in the state space . is a
counting measure which, for a region in the state space , counts the number
of points in falling into . Allowing the set of points to vary with the real-
isation of the point process leads to the construction of the random counting
measure and, for any fixed region , the integer-valued random variable

.

of the integer-valued random variables for any
, one can define themoment measures of the point process .
For any regions , the first and second moment

measures are defined by

(3a)

(3b)

(3c)

where , and

(4a)

(4b)

(4c)

The first moment measure provides the expected
number of targets or mean target number inside , while

denotes the joint expectation of the target number
inside and .
Note that, and can be selected such that they overlap1,

i.e., . In particular, the variance of the point
process [21] in any region is defined by

(5)

Note that the variance is a function, but not a measure, on the
Borel -algebra . It does not necessarily admit a density,

1In this case, the realisations of with targets in will have non-zero
values for both and . Consequently, the inner summation in
(4c) will have non-zero terms for .
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in general, even if and do. This fact motivates the
measure-theoretical approach adopted throughout this article.
The regional statistics provide an ap-

proximate description of , i.e., the local number of tar-
gets in according to the point process
• is the mean target number within ;
• quantifies the dispersion of the target number
within around its mean value.

Note that higher-order moments of a point process can be de-
fined—from the joint expectation of random variables
as for the variance (4)—in order to provide a more complete
description of the target number inside . Derivation of such
higher-order statistics is left out of the scope of this article.

C. Functional Differentiation

Statistical quantities describing a point process can be ex-
tracted through differentiation of various functionals, such
as its probability generating functional (PGFl) or its Laplace
functional (see Section II-D). Several functional differentials
can be defined. Moyal used the Gâteaux differential [25] in
his early study on point processes [26]; although it is endowed
with a sum and a product rule similar to ordinary differentials
of real-valued functions, it lacks a chain (or composition) rule
that would facilitate the derivation of multi-object filtering
equations.
In this article, we exploit the multi-object filtering framework

which is introduced in [15], [16], and considers the chain differ-
ential [27], in order to prove the results we present in Section III.
A restriction of the Gâteaux differential, the chain differential
admits a composition rule. The chain differential of a
functional , (evaluated) at function in the direction (or in-
crement) , is defined as

(6)

where is a sequence of functions converging (point-
wise) to is a sequence of positive real numbers con-
verging to zero, if the limit exists and is identical for any admis-
sible sequences and [27]2. An example of
chain differentiation for multi-object filtering is given in [28].

D. Generating Functionals

The PGFl of a point process is defined by the expectation

(7a)

(7b)

(7c)

where is a test function, i.e., a real-valued function belonging
to the space of bounded measurable functions on , such that

and vanishes outside some bounded region
of [22].

2When there is no ambiguity about the function where the differential is eval-
uated, the notations and will be used interchangeably.

The Laplace functional [21], [22] of a point process is given
by the expectation

(8a)

(8b)

(8c)

Both functionals fully characterise the probability distribution
and are linked by the relation

(9)

The probability distribution and the factorialmoment measures
of a point process can easily be retrieved from functional differ-
entials of the PGFl, making the PGFl a popular tool in multi-ob-
ject filtering. Mahler’s original construction of the PHD [5] and
CPHD [6] filters, for example, exploits the differentiated PGFl.
In our derivations for the second-order moment measure, we use
non-factorialmoment measures which are easily retrieved from
the Laplace functional [21]. To be precise, the factorialmoment
measures have a different construction and definition than
the non-factorial moment measures and will not be con-
sidered further in this article with the notable exception of the
first factorial moment measure , which coincides with the
first (non-factorial) moment measure .
The first and second moment measures of a point process

in any regions are given by the differentials [21]

(10)

(11)

where is the indicator function on

(12)

For the sake of simplicity, the superscript on the first moment
measures is omitted in the rest of the article and is denoted
by .

E. Multi-Target Bayesian Filtering

In multi-object detection and tracking problems, the target
process is a point process providing a stochastic descrip-
tion of the posterior distribution of the targets in the state space
at time , based on the measurement history up to time .
Bayesian filtering principles are applicable to themulti-object

framework [6]. The law of the filtered state is updated
through sequences of prediction steps—according (acc.) to
target birth, motion, and death models—and data update
steps—acc. to the current set of measurements3 .
The full multi-target Bayes’ filter reads as follows [4]:

(13)

(14)

3Eachmeasurement has an individual state in the observation space
and is the space of all the sets of points in .
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where is the Markov transition kernel between time
steps and , and is the multi-measurement/multi-target
likelihood at time step (detailed later)4.
Equivalent expressions of the multi-target Bayes’ filter can

be provided through generating functionals. The PGFls of the
predicted and updated processes are [15]:

(15)

(16)

Using (9), we can write an equivalent expression with the
Laplace functionals:

(17)

(18)

For the sake of tractability, assumptions are often made on the
prior and/or the predicted processes which
subsequently lead to closed-form expressions of specific filters
propagating incomplete information.

III. THE PHD AND THE CPHD FILTERS WITH REGIONAL
VARIANCE IN TARGET NUMBER

In this section, we aim to provide the regional statistics of
the updated target process for the CPHD and the PHD filters.
We review both filters and identify the updated process from
which we wish to produce the statistics in Section III-A. We
then provide the expression of its first (Section III-B) and second
(Section III-C) moment measures for both filters. The main re-
sults of this article, the regional statistics for the CPHD and
the PHD filters, follow in Section III-D. We discuss the proce-
dures to extract the regional statistics for the Sequential Monte
Carlo (SMC) implementations of the CPHD and PHD filters in
Section III-E.
The expressions of the first moment measures in Section III-B

are well established results from the usual PHD [5] and the
CPHD [6] filters. The derivation presented in Appendix B,
however, exploits the recent framework proposed in [15]. On
the other hand, the expressions of the second moment measure
(Section III-C) and the regional variance (Section III-D) are
novel results exposed in the authors’ recent conference papers
[29], [30].

4In the scope of this article, the infinitesimal neighbourhoods defined
around any point are always chosen as elements of the product Borel
-algebra . Thus, is a notation for thewell-defined
expression for any test function .

Fig. 2. PHD and CPHD filtering with variance.

A. Principle

The PHD [5] and the CPHD [6] filters are perhaps the most
popular approximations to the multi-target Bayes’ filter (13),
(14). The predicted target process is either approx-
imated by an independent and identically distributed (i.i.d.)
process (CPHD filter), or by a Poisson process (PHD filter).
An i.i.d. process [31] is completely described by 1) its car-

dinality distribution 5, and 2) its first moment measure6 .
Hence, the CPHD filter propagates a cardinality distribution
and a moment measure . A Poisson process is a specific

case of an i.i.d. process in which the cardinality distribution is
a Poisson distribution with rate . Hence,
a Poisson process is completely described by its first moment
measure , propagated by the PHD filter (see Fig. 2).
The updated target process is not, in the general case,

i.i.d. (respectively Poisson) even if the predicted is; that
is, the updated probability distribution is not completely
described by the output of the CPHD (respectively PHD) filter.
As a consequence, the computation of the variance pro-
vides additional information on the updated process , be-
fore its collapse into a i.i.d. (respectively Poisson) process in the
next time step (see Fig. 2).
As shown in Fig. 2, this article focuses on the generation of

additional information describing the updated target process;
hence, the prediction step (15) will not be further mentioned.
The rest of the article describes the extraction of the informa-
tion statistics at an arbitrary time step .
For the sake of simplicity, we discard the time subscripts and
denote the predicted and the updated processes with and

5 is the probability that a realisation of the point process has size
, i.e., the probability that there are exactly targets in the surveillance scene.
6An i.i.d. process is usually described by the Radon-Nikodym derivative

of its first moment measure w.r.t. to the Lebesgue measure, also called its
first moment density or intensity or Probability Hypothesis Density [5]. Since
we are interested in producing higher-order statistics on the target number, i.i.d.
processes on targets are described by their first moment measure instead.
I.i.d processes on measurements, however, are still described by their intensity
or, to be precise, by their normalised intensity or spatial distribution (see

Theorem 1 and 2).
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respectively. In addition, we denote the current set of measure-
ments by .

B. First Moment Measure (CPHD and PHD Updates)

Lemma 1: First moment measure (CPHD update) [6], [32]
The first moment measure of the updated process in any
region , under the assumptions that [6]:
1) The predicted process is an i.i.d. process, with cardi-
nality distribution and first moment measure ;

2) A target is detected by the sensor with probability ;
3) If detected, a target produces a single measurement
acc. to the single-measurement/single-target likelihood

;
4) The clutter is an i.i.d. process, with cardinality distribution

and spatial distribution ;
is given by

(19)

where the corrector terms and are given by

(20)

where (following the notation introduced by Vo, et. al. in [32]):

(21)

(22)

where for any region

(23)

(24)

where is the single-measurement/single-target observation
kernel, i.e.,

(25)

(26)

The function is the elementary symmetric function of order
[31]

(27)

applied in (21) to the set and referred as
for notational convenience.

The proof is given in Appendix B (Section B-B).

Corollary 1: First moment measure (PHD update) [5]
The first moment measure of the updated process in any
region , under the assumptions given in Lemma 1 and
the additional assumptions that [5]:
1) The predicted process is Poisson;
2) The clutter is Poisson, with rate ;
is given by

(28)

The proof is given in Appendix B (Section B-C).

C. Second Moment Measure (CPHD and PHD Updates)

Lemma 2: Second moment measure (CPHD update)
Under the assumptions given in Lemma 1, the second moment
measure of the updated process in any regions
is given by

(29)

where the corrector terms , and are given
by:

(30)

The proof is given in Appendix B (Section B-D).
Corollary 2: Second moment measure (PHD update)

Under the assumptions given in Corollary 1, the second moment
measure of the updated process in any regions
is given by

(31)

The proof is given in Appendix B (Section B-F).

D. Main Results

The two following theorems are the main results of this ar-
ticle. Their proof is given in Appendix B (Section B-G).
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Theorem 1: Regional statistics (CPHD update)
Under the assumptions given in Lemma 1, the regional statis-
tics7 of the updated process in any region are
given by

(32)

(33)

where if , or zero otherwise.
Theorem 2: Regional statistics (PHD update)

Under the assumptions given in Corollary 1, the regional statis-
tics of the updated process in any region are given
by

(34)

(35)

E. Discussion on Implementation

We consider SMC implementations of the PHD and the
CPHD filters and equip them with regional statistics. The
resulting algorithms are given in Appendix C.
The SMC-PHD filter with regional variance can easily be

drawn from the usual SMC-PHD filter [23]. Indeed, the regional
variance is computed using the terms that are already computed
to find the regional mean (34) in the SMC-PHD filter (see Algo-
rithm 2). The computational complexity of the PHD filter with
the variance is still linear w.r.t. the number of current measure-
ments .
Similarly, the construction of the SMC-CPHD filter with re-

gional variance is an extension to the well-known SMC-CPHD
filter [31]. As shown in Algorithm 1, the additional corrector
terms , and (30) are computed in parallel
to the usual corrector terms and (20). In the usual
CPHD filter, the bulk of the computational cost stems from the
computation of and in the filtering equation (32)
or, more specifically, the elementary symmetric functions (27)
appearing in the and terms (21). The number of opera-
tions to compute is evaluated at in [32] and

elementary symmetric functions must be computed for
and . Thus, it has been shown by Vo et al. that the

computational complexity of the CPHD filter is ,
where is the number of current measurements [32].

7Note (see Fig. 2) that the usual CPHD filter produces the updated cardinality
distribution . Hence, it provides a full stochastic description of the target
number in the whole state space; that is, of the random variable (see
Fig. 1 with ). The regional variance can thus be extracted from the usual
CPHD, but only for the specific region .

Fig. 3. Example scenario: target trajectories (position plane) and sensor loca-
tion (‘ ’). Circles indicate target initial positions.

TABLE I
INITIAL TARGET STATES AND TRACK INFORMATION

The corrector terms and (30), required for the
computation of the regional variance (33), do not involve new
elementary symmetric functions and can be found in parallel
to and without significant additional cost (see
Algorithm 1). On the other hand, involves
different terms (21) with additional elementary symmetric
functions —for every couple of distinct measurements

. Thus, the computational complexity of the SMC-CPHD
filter with regional variance is .

IV. SIMULATION EXAMPLES

In this section, we demonstrate the concept of regional vari-
ance for the PHD and the CPHD filters using the multi-target
scenario illustrated in Fig. 3. A range-bearing sensor located
at the origin takes measurements from five targets that appear
and disappear over time in the surveillance scene. The sensor
Field of View (FoV) is the circular region centred at the origin
and with radius 3500 m. The standard deviations in range and
bearing are selected as 5 m and 1 respectively. The clutter is
generated from a Poisson process with rate and uniform
over the FoV.
The state of targets is described by a location and a ve-

locity component, and the subset of that falls in the
FoV is the state space . The state transitions follow a linear
constant velocity motion model and (slight) additive zero mean
process noise after getting initiated with the values given in
Table I. Trajectories of targets 1 and 2 cross each other at time

s.

A. Variance as a Global Statistic

In this example, we consider the regional variance over the
FoV under different target detection probabilities. Doing so, we
demonstrate the effect of the probability of detection on the
uncertainty of the estimated target number. We simulate mea-
surements with , and 0.85 and run both the
CPHD and the PHD filters. The mean and the variance in the
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Fig. 4. Mean target number and standard deviation (square root of the re-
gional variance) integrated in the whole FoV, for , and 0.85.
Results obtained using (a)–(c) the CPHD filter, and, (d)–(f) the PHD filter. The
plots are the averages over 100 Monte Carlo runs. (a) CPHD, , (b)
CPHD, , (c) CPHD, , (d) PHD, , (e) PHD,

, (f) PHD, .

target number within the FoV (given by the regional statistics
evaluated in the whole FoV) are computed using Algorithms 2
and 1.
In Fig. 4(a)–(c), we present the mean target number in the

FoV (blue line) computed using the CPHD filter, together with
the ground truth (black line). The variance in target number
within the FoV is used to quantify the level of uncertainty in
the mean target number. Specifically, we present confidence in-
tervals as the square root of the regional variance which
in turn admits a standard deviation interpretation. We note that
the uncertainty increases as we lower the probability of detec-
tion, coinciding with our intuition. The behaviour of the confi-
dence bounds computed using the PHD filter is similar as seen
in Fig. 4(d)–(f).
The regional variances used to find the aforementioned con-

fidence intervals are presented in Fig. 5. In Fig. 5(a), we plot the
results obtained using the CPHD filter as goes from 0.95 to
0.85. Similar plots for the PHD filter are provided in Fig. 5(b).
The increasing uncertainty with the decreasing can clearly
be seen. We also note that the variance over the FoV grows sig-
nificantly more with the PHD than with the CPHD filter as
is lowered.
In Fig. 5(a) four spikes in the variance of the CPHD filter

are clearly noticeable around times when targets are leaving the
scene (i.e., and 170 s), while none are vis-
ible in Fig. 5(b) for the PHD filter. Previous studies [31], [33]
have shown that the CPHD filter is much more confident in its
estimation than the PHD filter and, in consequence, much less
reactive to (unexpected) changes in the target number. In the
case of the CPHD filter, the predicted cardinality is the convo-
lution of the cardinality of newborn targets and the cardinality
of surviving targets [31]. Since a) the estimated target number
has stabilized to the correct value just before a target death, and
b) the probability of target survival in our model is almost one,
the CPHD filter fails to predict a reduction in the target number.
Consequently, several time steps with a reduced number of mea-
surements seem necessary for the CPHD filter to integrate the
disappearance of a target, during which the uncertainty on the
target number increases. The PHD filter, less confident in its
cardinality estimation, seems more forgiving to the modelling

Fig. 5. Regional variance, integrated in the whole FoV (a) using the CPHD,
(b) the PHD filter, for , and 0.85. The plots are the averages
over 100 Monte Carlo runs.

Fig. 6. Approaching targets: targets 1 (black) and 2 (blue) crisscrossing around
time step s. The distance between the targets is 76.1, 5.4 and 78.9 at time
steps s, 55 s, and 59 s, respectively.

error on the probability of survival and more reactive to an un-
expected target death.

B. Variance as a Local Statistic

In this example, we illustrate the variance evaluated in
regions of various sizes within the FoV. Specifically, we
consider concentric circular regions of growing radius around
the location of target 1 while its trajectory crosses that of
target 2 (Fig. 6). We vary the radiuses from m to 200 m
with 1 m steps at time steps and 59 s. The distance
between the targets are 76.1, 5.4 and 78.9 m., respectively, at
these time instants, so, the regions with larger radius cover
both targets.
We compute both the mean target number in these concen-

tric regions and the associated uncertainty quantified by the
proposed regional variance. We expect the mean target number
to be monotonically increasing as a function of the radius and
to reach approximately two for the larger circles. The regional
variance, on the other hand, is not necessarily monotonic and we
expect its envelope to be an indicator of whether target 1 can be
resolved in the sense that we can identify circular regions that
contain only target 1 with high confidence.
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Fig. 7. Regional mean (plain lines) and variance (dotted lines) in circular re-
gions centred at the position of target 1 at time and 59 s for the CPHD
(a)–(c) and the PHD (d)–(f) filters, respectively. Results are given for a superior
(black lines) and an inferior (red lines) range-bearing sensor. (a) CPHD,
s, (b) CPHD, s, (c) CPHD, s, (d) PHD, s, (e) PHD,

s, (f) PHD, s.

In Fig. 7(a)–(c), we present the plots of the regional mean and
variance in target number (solid black lines) from the CPHD
filter as a function of the radius, for a typical run. For
m, the mean target number in the region is approximately two
with very small variance suggesting that with very high confi-
dence, both targets are covered at and 59 s. As the
radius increases from m (and the circumferences of the
regions depart from target 1), the uncertainty starts increasing
until it reaches a local maximum. The behaviour of the variance
curves, after the local maximum and until they reach a small
steady value, is of concern. In both Fig. 7(a) and (c), the local
minimum separating the two maximums clearly indicates that
target 1 is contained with high confidence in a circle whose ra-
dius equals the value at theminimum (as themean target number
also reaches one at this minimum). When the targets are located
at their closest positions, (Fig. 7(b)), we cannot identify such
regions.
We contrast these results with those obtained after filtering

the measurements of an inferior range-bearing sensor which has
12.5 m and 2.5 standard deviations in range and bearing, re-
spectively. The regional variance for this sensor at
and 59 s (solid red lines in Fig. 7(a)–(c)) stays at a high level
until the expected target number reaches two, and, in turn, we
are unable to select a region that contains only target 1 with high
confidence. In other words, the two targets are not resolved at
these time instants.
In Fig. 7(d)–(f), we present similar results obtained using the

PHD filter. We note that the PHD filter performs as well as the
CPHD filter in terms of the ability to resolve the two targets in
this particular scenario. As a result, the regional variance com-
puted by any of the filters can effectively be used to assess the
level of uncertainty in the estimated number of targets in arbi-
trary regions.

V. CONCLUSION

The motivation of this work was to develop multi-object es-
timators that are able to provide information about the expected
number of targets and the uncertainty of the target number in
any arbitrary region of the surveillance scene. To the best of
the authors’ knowledge, this level of information has never

previously been available to operators through track-based
multi-target estimators. Providing the regional variance in
target number, alongside the regional mean target number, has
the potential to give an enhanced picture for surveillance sce-
narios to address sensor management and resource allocation
problems.
Multi-object estimation in a surveillance scene with a chal-

lenging environment is the focus of the multi-object paradigm
often known as Finite Set Statistics, which leads to filtering
algorithms built upon multi-object probability densities rather
than probability measures. However, since such implementa-
tions are insufficiently general to represent second-order infor-
mation about the target number in any arbitrary region, this ar-
ticle adopts a measure-theoretical approach which enables the
computation of the regional variance of multi-object estimators.
A comprehensive description of the theoretical construction and
the practical implementation of the regional mean and variance
in target number, in the context of PHD and CPHD filtering, is
provided and illustrated on simulated data.

APPENDIX A
INTERMEDIARY RESULTS

Property 1: Normalizing constant (CPHD and PHD updates)
[6], [32], [5]
Under the assumptions given in Theorem 1, the denominator of
the updated PGFl (16) becomes

(36)

Under the assumptions given in Theorem 2, the denominator of
the updated PGFl (16) becomes

(37)

The proof is given in Appendix B (Section B-A).

APPENDIX B
PROOFS

A. Property 1

Proof: We first focus on the CPHD filter. Using the defini-
tion of an i.i.d. process [31], the first assumption in Theorem 1
states that the first moment measure and the cardinality dis-
tribution are linked by the relation

(38)

They also completely determine the predicted process:

(39)

The remaining assumptions in Theorem 1 shape the multi-mea-
surement/multi-target likelihood and yield

(40)
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where:
• is the set of all the partitions of indexes

solely composed of tuples of
the form (target is detected and produces
measurement ), (target is not detected), or

(measurement is clutter);
• is the number of clutter measure-
ments given by partition .

Note that both the predicted probability measure (39) and the
likelihood function (40) are symmetrical w.r.t. the targets. This
property will help simplify the full multi-target Bayes update
(16) to tractable approximations for both PHD andCPHD filters.
Substituting (39) into (16) gives

(41)

Let us first fix an arbitrary target number and consider the
quantity . Since the likelihood is
symmetrical w.r.t. the targets, the integration variables play
an identical role and using (40) yields

(42)

Note that, since the targets are identically distributed, measure-
ment/target pairings and are equivalent for in-
tegration purpose in (42). Thus, selecting a partition
reduces to the choice of:
• A number of detections;
• A collection of measurements in ;
• An arbitrary collection of detected targets in .

Therefore, (42) simplifies as follows:

(43a)

(43b)

(43c)

using the function defined in (21). The multiplying constant
in (41), found to be , will appear as well in the
expression of the numerator of the updated PGFl (16) developed
in Appendix A in Section B-B and B-D will be omitted from
now on. Finally, substituting (43b) in (41) yields the result (36).

We now move to the PHD filter. Since a Poisson process is a
specific case of a i.i.d. process, we start from the CPHD result
(36) with the additional assumptions that:
1 The predicted process is Poisson:

;
2 The clutter process is Poisson: and

.
We may write:

(44a)

(44b)

(44c)

(44d)

(44e)

(44f)

where (44f) is the factorised form of (44e).

B. Lemma 1

Proof: Using (10), the first moment measure in some
is retrieved from the first order differential [15] of the

updated PGFl (16):

(45a)

(45b)

The expression of the denominator in (45b) is detailed sepa-
rately in Property 1 (Section A). Using Corollary 1 in [15], the
numerator expands as follows:

(46)
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where if otherwise. Thus:

(47)

As seen in (39) and (40) in the construction of the denomi-
nator (proof of Property 1 in Section B-A), and

are symmetrical w.r.t. to the targets in the specific
case of the CPHD filter. Thus (47) simplifies as follows:

(48a)

(48b)

Now, considering the expression of the likelihood (40), the like-
lihood term in (48a) can be split following partitions where
target is not detected and those where it is detected and pro-
duces a particular measurement , i.e.,

(49)

Substituting (49) in (48b), then substituting the result in the ex-
pression of the first moment measure (45b) finally yields

(50)

where the corrector terms and , following a similar
development as in the proof of Property 1, are found to be

(51a)

(51b)

and:

(52a)

(52b)

C. Corollary 1

Proof: Just as the Poisson assumption simplified the ex-
pression of as shown in the development (44), it simplifies
the expression of

(53)

(54)

Then, substituting the simplified expressions of (44f) and
(53), (54) in the first moment measure of the CPHD filter

(19) yields the result for the PHD filter (28).

D. Lemma 2

Proof: Using (11), the updated second moment measure
in some regions is retrieved from the second-

order differential [15] of the updated Laplace functional (18):

(55a)

(55b)

The second-order differential in (55b) is found to be

(56)

the proof being given in Appendix B (Section B-E). Substituting
(56) in the numerator of (55) gives

(57)
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Once again, the symmetry of and
w.r.t. to the targets in the case of the CPHD filter (see (39) and
(40)) allows the simplification of (57). We have:

(58a)

(58b)

The first likelihood term in (58b), just as in the proof of Lemma
1, expands following (49). Now, considering the general expres-
sion of the likelihood (40), the second likelihood term in (58b)
can be split following partitions where none of the targets
are detected, those where only one is detected and those where
both are detected. That is:

(59)

Substituting (59) and (49) in (58b), then substituting the result
in the expression of the second moment measure (55b) finally
yields, (60) shown at the bottom of the page, where the corrector
terms , and , following a similar develop-
ment as shown in the proofs of Property 1 (Section B-A) and 1
(Section B-B), are as defined by (30).

E. Expansion of

Proof: Expanding the exponential gives

where is the multinomial

(61)

Then, using Corollary 1 in [15] yields

(60)
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Thus, it follows that

F. Corollary 2

Proof: Just as the Poisson assumption simplified the ex-
pression of as shown in the development (44), it simplifies
the expression of

(62)

(63)

(64)

Then, substituting the simplified expressions of (44f),
(53), (54), and (62), (63), (64) in the second moment

measure of the CPHD filter (29) yields the result for the PHD
filter (31).

G. Theorems 1 and 2

Proof: The first order statistic is given by Lemma
1. Following the definition of the variance (5), the second-order
statistic is the second moment measure
(Lemma 2) with , from which is subtracted.
This concludes the proof of Theorem 1.
The proof of Theorem 2 is identical, except that Corollaries 1
and 2 are used instead of Lemmas 1 and 2.

APPENDIX C
ALGORITHMS

Algorithm 1 CPHD filter with variance: data update
(adapted from [31]) and information statistics

Input
Predicted intensity:
Cardinality distribution:
Current measurements:
Maximum cardinality:

Missed detection and measurement terms
for do

for do

end for
end for
Compute global missed detection term

Compute global measurement terms
for do

end for

Corrector terms
Compute using (27)
for do
Compute using (21)

end for
Compute using (20) and using (30)
for do
Compute using (27)
for do
Compute using (21)

end for
Compute using (20) and using (30)
for do
Compute using (27)
for do
Compute using (21)

end for
Compute using (30)

end for
end for

Data update
Update cardinality distribution
for do

end for
Update intensity
for do

end for
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Algorithm 1 CPHD filter with variance (cont.)

Regional terms

for do

end for

Mean target number

Variance in target number

Algorithm 2 PHD filter with variance: data update [23] and
information statistics

Input
Predicted intensity:
Current measurements:

Missed detection and measurement terms
for do
Compute missed detection term

Compute measurement terms
for do

end for
end for

Data update
for do
Normalize measurement contributions
for do

end for
Update particle weight

end for

Regional terms

for do

end for

Mean target number

Variance in target number
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