26,479 research outputs found

    Generalized multi-scale stacked sequential learning for multi-class classification

    Get PDF
    In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches

    Modelling Sequential Music Track Skips using a Multi-RNN Approach

    Get PDF
    Modelling sequential music skips provides streaming companies the ability to better understand the needs of the user base, resulting in a better user experience by reducing the need to manually skip certain music tracks. This paper describes the solution of the University of Copenhagen DIKU-IR team in the 'Spotify Sequential Skip Prediction Challenge', where the task was to predict the skip behaviour of the second half in a music listening session conditioned on the first half. We model this task using a Multi-RNN approach consisting of two distinct stacked recurrent neural networks, where one network focuses on encoding the first half of the session and the other network focuses on utilizing the encoding to make sequential skip predictions. The encoder network is initialized by a learned session-wide music encoding, and both of them utilize a learned track embedding. Our final model consists of a majority voted ensemble of individually trained models, and ranked 2nd out of 45 participating teams in the competition with a mean average accuracy of 0.641 and an accuracy on the first skip prediction of 0.807. Our code is released at https://github.com/Varyn/WSDM-challenge-2019-spotify.Comment: 4 page

    Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together

    Full text link
    Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies. Further, their expressive power and performance can be boosted by using a vector to measure pairwise dependency, but this requires to expand the alignment matrix to a tensor, which results in memory and computation bottlenecks. In this paper, we propose a novel attention mechanism called "Multi-mask Tensorized Self-Attention" (MTSA), which is as fast and as memory-efficient as a CNN, but significantly outperforms previous CNN-/RNN-/attention-based models. MTSA 1) captures both pairwise (token2token) and global (source2token) dependencies by a novel compatibility function composed of dot-product and additive attentions, 2) uses a tensor to represent the feature-wise alignment scores for better expressive power but only requires parallelizable matrix multiplications, and 3) combines multi-head with multi-dimensional attentions, and applies a distinct positional mask to each head (subspace), so the memory and computation can be distributed to multiple heads, each with sequential information encoded independently. The experiments show that a CNN/RNN-free model based on MTSA achieves state-of-the-art or competitive performance on nine NLP benchmarks with compelling memory- and time-efficiency

    Stacking-based Deep Neural Network: Deep Analytic Network on Convolutional Spectral Histogram Features

    Full text link
    Stacking-based deep neural network (S-DNN), in general, denotes a deep neural network (DNN) resemblance in terms of its very deep, feedforward network architecture. The typical S-DNN aggregates a variable number of individually learnable modules in series to assemble a DNN-alike alternative to the targeted object recognition tasks. This work likewise devises an S-DNN instantiation, dubbed deep analytic network (DAN), on top of the spectral histogram (SH) features. The DAN learning principle relies on ridge regression, and some key DNN constituents, specifically, rectified linear unit, fine-tuning, and normalization. The DAN aptitude is scrutinized on three repositories of varying domains, including FERET (faces), MNIST (handwritten digits), and CIFAR10 (natural objects). The empirical results unveil that DAN escalates the SH baseline performance over a sufficiently deep layer.Comment: 5 page
    • …
    corecore