4 research outputs found

    Multi-scale Point and Line Range Data Algorithms for Mapping and Localization

    Get PDF
    This paper presents a multi-scale point and line based representation of two-dimensional range scan data. The techniques are based on a multi-scale Hough transform and a tree representation of the environment’s features. The multiscale representation can lead to improved robustness and computational efficiencies in basic operations, such as matching and correspondence, that commonly arise in many localization and mapping procedures. For multi-scale matching and correspondence we introduce a χ^2 criterion that is calculated from the estimated variance in position of each detected line segment or point. This improved correspondence method can be used as the basis for simple scan-matching displacement estimation, as a part of a SLAM implementation, or as the basis for solutions to the kidnapped robot problem. Experimental results (using a Sick LMS-200 range scanner) show the effectiveness of our methods

    Active SLAM in structured environments

    Full text link
    This paper considers the trajectory planning problem for line-feature based SLAM in structured indoor environments. The robot poses and line features are estimated using Smooth and Mapping (SAM) which is found to provide more consistent estimates than the Extended Kalman Filter (EKF). The objective of trajectory planning is to minimise the uncertainty of the estimates and to maximise coverage. Trajectory planning is performed using Model Predictive Control (MPC) with an attractor incorporating long term goals. This planning is demonstrated both in simulation and in a real-time experiment with a Pioneer2DX robot. ©2008 IEEE

    A Maximum Likelihood Approach to Extract Polylines from 2-D Laser Range Scans

    Full text link
    Man-made environments such as households, offices, or factory floors are typically composed of linear structures. Accordingly, polylines are a natural way to accurately represent their geometry. In this paper, we propose a novel probabilistic method to extract polylines from raw 2-D laser range scans. The key idea of our approach is to determine a set of polylines that maximizes the likelihood of a given scan. In extensive experiments carried out on publicly available real-world datasets and on simulated laser scans, we demonstrate that our method substantially outperforms existing state-of-the-art approaches in terms of accuracy, while showing comparable computational requirements. Our implementation is available under https://github.com/acschaefer/ple.Comment: 9 page
    corecore