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Abstract—This paper presents a multi-scale point and line
based representation of two-dimensional range scan data. The
techniques are based on a multi-scale Hough transform and
a tree representation of the environment’s features. The multi-
scale representation can lead to improved robustness and com-
putational efficiencies in basic operations, such as matching and
correspondence, that commonly arise in many localization and
mapping procedures. For multi-scale matching and correspon-
dence we introduce a χ2 criterion that is calculated from the
estimated variance in position of each detected line segment or
point. This improved correspondence method can be used as the
basis for simple scan-matching displacement estimation, as a part
of a SLAM implementation, or as the basis for solutions to the
kidnapped robot problem. Experimental results (using a Sick
LMS-200 range scanner) show the effectiveness of our methods.

I. INTRODUCTION AND PRELIMINARIES

Autonomous mobile robot navigation in unknown envi-

ronments requires effective localization and mapping. Con-

sequently, the subjects of localization and mapping have

received enormous attention (e.g., see [1], [2], [3], [4], [5],

[6]). Some tasks in localization and/or mapping require high

quality correspondences to be established between sensor data

collected at different times and different robot positions. Ex-

amples of localization and mapping related tasks that require

correspondence include scan-matching based odometry [7] and

the kidnapped robot problem [8].

In developing practical correspondence and localization

methods, it can be difficult to simultaneously achieve the three

objectives of overall robustness to mismatches and errors, the

flexibility to handle a wide range of environmental types and

conditions, and computational efficiency. This is particularly

true for large and complex environments. While range scan

matching methods such as [7] and [9] are very flexible as

they don’t assume any a priori knowledge of the environment,

the iterative correspondence required to match range points

can be less robust to poor initial position estimates and the

method is computationally burdensome for a large map due

to the potentially large number of point features. This paper

tries to address these problems.

This paper introduces multi-scale feature extraction and data

correspondence methods that can potentially be applied to

a number of problems related to localization and mapping.

Figure 1 shows the method applied to actual data from a planar
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Fig. 1. Multi-scale range scan representation: (a) scale tree graph; (b)-(d) a
sequence of increasingly fine scale representations of the data.
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laser range scanner. Using line-fitting techniques (e.g., [10],

[11], [12]), one can fit lines to the range data points in order

to reduce the data complexity. In this paper we introduce a

multi-scale version of line fitting and feature extraction that

represents range data with line segments whose line widths

increase as the scale becomes coarser. (e.g., see Figures 1(b)-

(e)). The features are based on augmented line segments ( or

blocks), though the feature class can encompass very short
segments or even single points in the case of unstructured

data. The interrelation between features at each scale are

represented as a tree structure (Fig. 1(a), where the red nodes

and branches in the tree correspond to the red features in the

Fig.s 1(b,c,d,e)).

This multi-scale feature representation can be used for:

1) Multi-scale scan-based odometry. Iterative closest point
(ICP) algorithms are frequently used to register two scans as

part of scan-matching based odometry [7], [9]. Based on a

multi-scale representation of the scans to be registered, one

can use a coarse to fine traversal of the data trees to greatly

reduce the search space for correspondences at fine scales.

For example, at the coarsest scale (Fig. 1(b)), the 360 data

points are represented by 12 coarse line features. These coarse

features can provide a very fast initial registration, which is

then refined at finer scales. Potentially, this approach will result

in more robust correspondence and fewer iterations.

2) Multi-scale feature correspondence for matching. A
coarse-to-fine data traversal can also simplify the computations

required to determine if two scans are a match. To properly

implement such a matching method, one needs a correspond-

ing multi-scale χ2-test, which we provide in this paper.

3) Kidnapped robot problems. The solution to the kidnapped
robot problem [8] invariably involves matches between a

sensor scan from the robot’s current configuration with a

data base of geometric data to find the most likely robot

configuration. The coarse scale representation allows a very

efficient search of the data base. Many possible mismatches

can be eliminated at the coarse scales, where the computational

complexity of the matching procedure is small.

We focus on these first two issues in this paper, as the multi-

scale approach to solving the kidnapped robot problem is a di-

rect consequence of these issues. Our preliminary experimental

results have shown that multi-scale methods provide advan-

tages (as compared to single scale data analysis) in terms of

robustness, programming flexibility, and computational effort.

Relation to prior work. It has long been recognized that
the computational complexity of mapping and localization can

scale prohibitively with the amount of sensor data acquired

by the robot and the number of landmarks encountered by the

robot during its mapping and localization processes. A number

of authors have focused on different techniques to reduce the

computational complexity associated with various aspects of

mapping and localization. For example, sparsification of the

information matrix can significantly increase the efficiency of

Kalman filter based SLAM methods [13], [14]. Rao Black-

wellization has also been used to increase the efficiency of

particle filtering based SLAM algorithms (e.g, the FastSLAM

algorithm[15]). Finally, feature based SLAM methods attempt

to reduce computational requirements by feature-based data

reduction [16]. Our approach, which focuses on multi-scale

feature extraction and multi-scale correspondence, is most re-

lated to this last subject. However, in addition to computational

complexity, our work is also concerned with robustness to data

errors.

Prior work has looked at some aspects of multi-scale data

processing for localization, mapping, and navigation. Madha-

van et. al. [17] applied the classical scale space approach

of Gaussian smoothing to range data. A number of au-

thors have used multi-scale methods for efficient environment

representation or planning [18], [19], [20]. However, these

prior works did not attempt multi-scale feature extraction and

correspondence.

This work uses a multi-scale Hough transform to efficiently

extract multi-scale line segment features from planar range

data. There is a large existing body on fitting single scale

lines to range data for purposes of mapping and localization

[21], [11], [12], [22]. In the field of computer vision there have

been prior efforts to develop a multi-scale Hough transform

[23], [24], [25] though our particular version of the multi-scale

Hough transform in this paper appears to be unique. The moti-

vation for much of the prior work in the computer vision field

is to use a multi-scale approach to increase the efficiency of

the extraction process [26]. We see similar efficiency benefits

in our extraction methods, but the primary contribution of this

work is how we utilize our multi-scale feature representation.

Using the multi-scale Hough transform as a foundation, we

introduce algorithms for multi-scale feature correspondence

and displacement estimates that take advantage of the multi-

scale data structure to improve robustness and reduce com-

putational complexity. In this work we focus on line-based

Hough transforms, however, the general properties of the

Hough transform should allow multi-scale extensions to other

features types (such as circular arcs and curves).

This paper is structured as follows. Section II introduces

a polar representation for lines (see [10] for more details)

and the notion of line scale. Section III describes the multi-

scale Hough transform while Section IV reviews the scale tree

dendogram that organizes the multi-scale features extracted

from the Hough transform. Section V describes a χ2 test

for multi-scale matching. Section VI provides experimental

examples and results that demonstrate the use of our multi-

scale methods to improve the efficiency of the correspondence

search and to implement robust scan matching based odometry.

II. MULTI-SCALE FEATURE REPRESENTATION

This section develops the scaled feature representation

which forms the core of our approach. Our block feature is
a multi-scale extension of a line segment. We first outline an

infinite line representation and its covariance, and then build

on this representation to develop the block feature.
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A. Line Representation

We represent an infinite line, L, in polar coordinates as:

L =

[
α
ρ

]
(1)

where ρ and α represent the magnitude and heading of the
vector which extends from the origin to L and which is
perpendicular to L. Thus α and ρ respectively define the
“orientation” and “position” of L (see Fig. 2). Our lines will
be derived from noisy data. Therefore, we define a covariance

matrix associated with L as:

PL =

[
Pρρ Pρα

Pαρ Pαα

]
(2)

where Pρρ is the variance in the line’s position ρ, Pαα is

the variance in the line’s orientation α, and Pρα = Pαρ

are the cross-correlation terms. Fig. 2 graphically depicts

the uncertainty of an infinite line L with Pρρ and Pαα

shown. In subsequent figures, coupled orientation and position

uncertainty bounds for line segments will be represented as a

hyperbola with the distance between the vertices determined

by Pρρ and the asymptotes determined by Pαα. The cross

terms of the covariance matrix determine where along the line

the asymptotes intersect.

L

α

ρ

α uncertainty

ρ uncertainty

Fig. 2. Representation of line L and its uncertainty bounds.

B. The “Block” Feature Representation

A block feature extends the notion of a line segment to a
multi-scale setting and allows for flexibility in representing

complex sets of point data. While we do assume a Gaussian

distribution on the uncertainty of the position of the block

boundaries, we don’t need to make any assumptions or ab-

stractions on the distribution of the set of points represented

by the block. We are therefore able to develop algorithms using

the block feature which are less sensitive to residue from the

scanning process and scanning geometry and more descriptive

of the underlying environment.

A block feature, B, is represented as follows:

B =
[
α ρa ρb ψa ψb

]T
(3)

where ρa and ρb define the position of a pair of bounding

infinite lines at angle α. We define the ψ axis to be perpendic-
ular to the ρ axis and the coordinates ψa and ψb represent the

locations of the endpoints of the feature as measured colinearly

with the underlying line (with ψ taking a zero value where the
perpendicular vector intersects L). These coordinates represent

B

bψ

aψ

ρ ρ

α

a
b

Fig. 3. Block B representation.

a rectangular block oriented at α, with a width wB = (ρb−ρa)
and a length lB = (ψb − ψa) as seen in Fig. 3.
Practically, block features can be interpreted as a line

segment of length lB and non-zero width wB . The “width”

of the line segment feature is proportional to scale, and it

approaches a zero-width line segment (ρa � ρb) at the finest

scale.

Though we focus primarily on line-segment-like features,

our representation is also flexible enough to represent blob-like

groups of points without the high length-to-width ratio of a

line-like feature. In these cases the notion of feature orientation

α becomes less meaningful but the blob features can still be
used effectively in a correspondence and localization scheme.

The covariance matrix associated with block feature B is:

PB =

⎡
⎢⎢⎢⎢⎣

Pαα Pρaα Pρbα Pψaα Pψbα

Pαρa
Pρaρa

Pρbρa
Pψaρa

Pψbρa

Pαρb
Pρaρb

Pρbρb
Pψaρb

Pψbρb

Pαψa
Pρaψa

Pρbψa
Pψaψa

Pψbψa

Pαψb
Pρaψb

Pρbψb
Pψaψb

Pψbψb

⎤
⎥⎥⎥⎥⎦ . (4)

It is often useful to separate the feature into sub-elements

(line edges, corner points) when comparing with other features

as we will discuss in Section V. Though many of the cross

terms for this covariance representation can be assumed to be

zero for our method of feature extraction, all of our χ2-based

comparison methods can operate on the full covariance matrix.

III. FEATURE EXTRACTION

The goal of the feature extraction process is to sort a set

of n range points V = {v1...vn} into m roughly colinear

point subsets Vk, k = 1, . . . , m while at the same time

estimating the block parameters (B, PB). Note that m is not
a predetermined value, and it will depend upon the scale.

Extraction of the m feature coordinates is an iterative, two

step process. In the first step, the underlying line coordinates

[α, ρa, ρb] are extracted from the data using an augmented
Hough transform (see below). In the second, the endpoints

[ψa, ψb] are estimated. Because of truncation performed during
the endpoint estimation, the second step can have an effect

on the optimal estimation of the underlying infinite line

coordinates. We therefore repeat these steps iteratively until

the process stabilizes, usually in three or fewer iterations.

A. Multi-Scale Hough Transform

To extract the underlying infinite line coordinates [α, ρa, ρb],
we first transform the range points using a multi-scale version
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of the Hough transform. Let us first briefly review the classical

Hough transform. Define a Hough space H(i, j) as a two
dimensional raster with integer indices i and j indexing the
variables ρ(i) and α(j) respectively. The variable α(j) is
discretized in increments of Dα on the range [−π/2, π/2]
and the variable ρ(i) is discretized in increments of Dρ on

the range [−dmax, dmax] where dmax is the maximum range

value to be expected in the data point set. We choose our

discretization level Dα as a function of the discretization level

Dρ and the maximum sensor range lmax :

Dα = tan−1(Dρ/lmax) . (5)

Cell {i, j} of the discretized Hough space therefore represents
the range of line coordinates [ρ(i)±Dρ/2 α(j)±Dα/2]. The
content of each cell in the Hough raster is initially set to zero.

For each range point, for all i we calculate the position ρik of

the line at angle α(i) that would pass through point k:

ρik = xk sin(α(i)) + yk cos(α(i)) (6)

where xk, yk are the coordinates of the kth range data point.

From this value of ρik, determine the index j∗ such that
ρ(j∗) − Dρ/2 < ρik ≤ ρ(j∗) + Dρ/2. The value at Hough
space cellH(i, j∗) is incremented. This process is repeated for
every range point. The cell in Hough space with the highest

incremented value corresponds to the line which has the most

contributing points.
The traditional Hough transform simply detects peaks in the

Hough space and defines lines from the peaks’ coordinates.

We augment this technique in order to determine a sense of

the scale in the width of the detected lines. First determine the

angle coordinate α of a peak in the Hough space. Then extract
the one dimensional signal Γ(i) = H(i, α) which corresponds
to the magnitudes of the set of lines at all values of ρ which
have an orientation of α. We then convolve Γ(i) with a
discretized version of the derivative of the Gaussian whose

variance σρ is defined as the ’scale’ of the extraction. This

convolution acts as an edge detector and we set the values

of ρa and ρb to the dominant maximum and minimum of the

convolved signal at the given scale.

Fig. 4(b) shows a Hough transform for the set of points

in Fig. 4(a). The black line in Fig 4(b) passes through the

cells corresponding to lines at angle α. Fig.s 4(c,d) show this
slice of the Hough space as well as the convolution of this

discrete signal with a derivative of Gaussian basis at multiple

scales. The values for ρa and ρb are detected as the maximum

and minimum of the convolved signal. The resulting blocks at

different scales are shown in fig.s 4(e,f) (with arbitrary end

points chosen for the segment, as they are computed in a

subsequent step).
We estimate the variance of the terms Pρaρa

and Pρbρb
from

Eq. (4) as follows:

Pρaρa
= Pρbρb

= (σρ)2 + P ρ
noise (7)

where

P ρ
noise =

(
n∑

k=1

1

P k
v

)−1

(8)
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Fig. 4. Multi-scale extraction of ρa,ρb - (a) Raw scan points (b) Hough
transform (c,d) Block ρ boundary detection at different scales (e,f) Detected
block at fine and coarse scales.

and P k
v is the projection of the modeled range sensor mea-

surement noise for point vk onto the ρ axis and n is the
total number of points in the block. Therefore the uncertainty

in the ρ position of a block feature is a combination of the
scale extraction uncertainty (σρ)

2 and the sensor measurement

uncertainty Pnoise. At coarser scales the contribution from the

extraction uncertainty dominates with (σρ)
2 >> P ρ

noise while
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at very fine scales the uncertainty from sensor noise can be

significant.

We define the uncertainty in the α measurement to be a
similar combination of our discretization level Dα and process

noise :

Pαα = (Dα)2 + P α
noise (9)

where P α
noise can be computed as shown in [27].

Note that the nature of the multi-scale Hough transform

allows additional computational cost savings. The computa-

tional cost can be reduced at coarser scales by decreasing

the resolution of the Hough space discretization (increasing

the bin size) in the ρ dimension (by increasing Dρ up to

the scale of the derivative of Gaussian convolution). With a

coarser scale in ρ we also gain the benefits of a similarly
coarser scale in the α dimension due to Eq. 5. A similar
method of improving efficiency of coarse feature extraction

is utilized in the “adaptive Hough transform” [28]. Moreover,

one can structure the Hough transform in a coarse-to-fine

fashion to gain added efficiencies. The clustering of range

points at a coarse scale significantly simplifies the Hough

transform calculations at the next finer scale, as knowledge

from the coarse scale reduces the searching, data grouping,

and computational requirements at the finer scale.

B. Endpoint Detection

Endpoint detection is an analogous process but performed

on the raw data points instead of in Hough space. We project

all points contributing to the line [α, ρa, ρb] onto the under-
lying line. We then convolve this signal with the derivative

of a Gaussian at a given scale σψ and detect the maximum

and minimum peaks. These peaks determine the endpoints of

the feature ψa and ψb. Fig. 5 shows the endpoint extraction

process for the fine scale infinite block shown in Fig. 4.

Like the ρ covariance terms, the variance terms Pψaψa
and

Pψaψb
in PB are set to be equal to the sum of the variance of

the given Gaussian basis and the process noise:

Pψaψa
= (σψ)2 + P ψa

noise (10)

Pψbψb
= (σψ)2 + P ψb

noise (11)

where the P ψ
noise terms are calculated by projecting the mea-

surement noise uncertainty of the distal points into the ψ axis.
The cross terms involving the variable α in the covariance
matrix PB are computed assuming the center of rotational

uncertainty of the block is anchored at the center of the

block. The remaining cross-coupling terms in the covariance

matrix PB we set to zero when the feature is extracted as

we assume that the noise contributions from the range sensor

independently effects the variables ρa, ρb, ψa, and ψb.

C. Multiple Feature Detection

As each feature is detected, the points contributing to

that feature which lie inside the bounds of the block are

removed from the candidate point set and the algorithm is

repeated, detecting features from the set of unselected points

until no points remain. The result is a set of m blocks and

ψa ψb

Convolution Basis

Extracted bounds uncertainty
Extracted ends (ψa ψb)
Convolved data
Point data projected into ψ axis
Point data inside infinite block

ψ (mm)
−2000 −1000 0 1000 2000 3000

Endpoint Extraction (ψa, ψb) Fine Scale
Extracted Block

Fine Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds

Fig. 5. End extraction at the fine scale

covariances {Bk, P k
B}σρ

, k = 1...m extracted at scale σρ with

a corresponding set of point groups {Vk}, k = 1...m. Each
point group Vk is the set of range data points associated

with the kth block feature. By design, the point groups are

disjoint, so that different features at the same scale can not

share underlying points. Fig. 6 shows the Hough space and

extracted block for the subsequent feature extracted from the

data in Fig.s 4 and 5.
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5
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Fig. 6. Subsequent block extraction.

IV. CONSTRUCTION OF SCALE TREES

We define a scale tree as a tree of block features extracted

from a common data set at multiple scales. Parent-child

connections on the tree are established for features at different

scales wherein the child feature at a finer scale has been

extracted from a subset of the data encompassed by the parent.

There are two basic methods of building a scale tree. The first

is bottom-up construction started by extracting features at the

finest scales and combining them into coarser scale features

while climbing the tree. The second is top-down construction,

started by extracting the coarsest features and then extracting

1163

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:05:01 UTC from IEEE Xplore.  Restrictions apply. 



finer and finer scale sub-features from the coarser features. In

this work we focus on the top-down construction method, the

results of which can be seen in Fig. 1(a) and Fig.s 7(a,c).

V. MULTI-SCALE FEATURE COMPARISON

To solve data correspondence problems that arise during

robot localization, we must pair up features extracted from

data taken at different robot poses. We use a χ2-test [29] to

determine if two individual features are not the same :

χ2 = (B2 − B1)(PB2 + PB1)
−1(B2 − B1) (12)

where B1 and B2 are defined in Eq. (3) and PB1 and PB2

are defined in Eq. (4). By applying a threshold to the χ2

distances between block pairs, we can eliminate candidate

pairs of features that have a very low chance of being a proper

match. The thresholds follow the classical χ2 theory [29] so a

threshold value of 15.1 corresponds to the χ2 distance above

which we have 99% confidence that the five degree of freedom

block pair doesn’t match. Note that this test can be applied

in a multi-scale fashion. Using a sequential ratio probability

test [30], one can establish two thresholds which guide the

matching sequence to accept or reject a match at the current

scale, or request processing at the next finer scale.

Also, given that we assume the variables ρa, ρb, ψa, and ψb

are statistically independent in our feature extraction method,

we can define a piece-wise χ2-test that assesses the χ2

distributions of these variables separately, thereby allowing

for partial matches of block features. In our examples we use

this method and assume two features are a positive match if

three out of the five block parameters pass the χ2-test. This

allows for improved robustness to changes in feature geometry

stemming from occlusion or different field of view across

compared poses. When using these partially matched features

to localize, we only use the subset of matched parameters.

VI. EXPERIMENTS

Here we provide a few simple examples to show the

effectiveness of the multi-scale data representation approach

for basic tasks that contribute to localization and mapping.

The first example explores the efficiency of finding data

correspondences using single scale and multi-scale methods.

We find a 5-fold improvement in computational speed with

the multi-scale approach, and suggest why such efficiency is

to be expected. The second example, which is based on the first

example, considers multi-scale scan matching for displacement

estimation. We show that the multi-scale approach leads to im-

proved robustness with respect to perturbed initial conditions.

A. A Correspondence Example.

Fig. 7 presents an example using data collected from a Sick

LMS-200 range scanner in an indoor office environment. All

computations and timing estimates are done using the Matlab

programming environment running on a Athlon 2.0Ghz CPU.

The first set of data, termed “scan 1,” is actually the same

data found in Fig. 1(b). The second set of data, termed “scan

2,” was taken at a nearby robot pose. Fig.s 7(a,b) show the
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Matched feature nodes
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Fig. 7. Multi-scale range scan representation: (a) Scale tree for pose 1 (b)
Finest scale features pose 1 (b) Scale tree for pose 2 (d) Finest scale features
for pose 2 (e) Corresponding features from pose 1, pose 2.

scale tree and the finest features extracted from scan 1 and

fig.s 7(c,d) show the scale tree and finest features extracted

from scan 2. For this example we assume a known and

somewhat accurate estimate of the displacement between the

two poses (such as might be provided by odometry). We wish

to determine the correspondences between the features at the

finest scale of each pose. There are 52 fine features detected in

scan 1 and 53 fine features detected in scan 2. The total number

of feature-to-feature comparisons carried out at the finest scale

by an exhaustive search is 2756, which takes 0.55 seconds of

processing time. The multi-scale version proceeds by using the

χ2-test at every scale to check for matches between features.

When feature matches are found (i.e., the feature pairs pass

the χ2-test), then the children nodes of the matching features
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are compared with the χ2-test. This approach significantly

reduces the search space. When comparing the same data set

and taking advantage of the scale tree structure, the same set

of correspondences is extracted using only 470 comparisons in

0.18 seconds. We repeated this example for 100 pairs of unique

scans in similar environments. The results showed an average

time for the exhaustive search of 0.329 seconds for 1708

comparisons, and an average computational time for the multi-

scale matching of 0.086 seconds for 274 comparisons. These

results show a nearly 4-fold decrease in computation time and

more than a 6-fold decrease in computational complexity using

our multi-scale approach.

While the relative improvement of our method with respect

to single scale correspondence will depend upon the data set,

the efficiency is inherent in our method, as shown in the

following simplified analysis. Assume that we wish to deter-

mine the correspondence between N features in two different
range scans. For the sake of simplicity, assume that N = 2m

for some integer m. The process of finding correspondences
between the N features in two scans has complexity βN 2,

where β is a scaling coefficient that depends upon the details
of the correspondence method. Now consider the computation

involved in finding correspondences with the scale trees.

Assume for the sake of a simplistic argument that the scale tree

is dyadic–each node has two children nodes. At the coarsest

scale, we only search for correspondences between two pairs

of features, which results in a computational cost of β22. At

the next finer scale, there are 4 features to check for possible

matches. However, we need only check for correspondences

among the features of the children that descend from the

parent nodes that were found to be in correspondence at the

coarser scale. This results in a computational cost of 2β22.

Continuing in this fashion for log(m − 1) levels in the tree,
we find that the multi-scale version of correspondence requires

computational effort of β(N − 1)22. Thus, for the specific

case of a dyadic tree, our method should scale linearly with

the number of features, as opposed to quadratically for a fine

scale analysis. While not all scale trees will be dyadic, clearly

there are substantial computational savings to be had with this

approach.

B. A Localization Example.

This example focuses on the most basic process of reg-

istering two scans, which can be used in a scan-matching

odometry process, or as part of the solution to the kidnapped

robot problem. We consider two scans taken at different poses

(the same scans as in the last example), and we seek to

estimate the relative displacement between these poses. Our

method starts at the coarsest scale and extracts block features

from each scan and compute feature correspondences given

an initial (but not necessarily accurate) displacement estimate

(e.g., from odometry). We use these initial correspondences to

correct our displacement estimate, and then apply this updated

displacement estimate when extracting features and computing

correspondences at the next finer scale. We continue this

method down the scale tree until we reach the finest scale

True pose 2

Perturbed pose 2

Pose 2 uncertainty boundsPose 2 uncertainty bounds

Pose 1

Features, pose2
Features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Unmatched features, pose2
Unmatched features, pose1
Matched features, pose2
Matched features, pose1

Fig. 8. Multi-scale localization example where the blue circle is pose 1, the
red circle is the estimated pose 2, and the black circle is the actual pose 2 (a)
Initial pose estimates and raw scans (b) coarse feature fit (c-g) Intermediate
pose estimates and feature correspondences at each scale.
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features and compute our most accurate displacement estimate.

While we use the same pair of range scans as seen in Figure 1,

we have purposely introduced a significant error in the initial

estimate of displacement between the poses of 2 meters and

10 degrees. In this way, we can test the robustness of the

matching process.

Figure 8(a) shows the two scans overlayed with this initial

displacement error and the initial corresponding coarse scale

features. The green ellipses in these plots represents the 3σ
bounds of uncertainty of the poses. Figure 8(b) shows the

poses after initial correction from the correspondences at

the coarsest scale. In the subsequent Fig.s 8(c-g) we show

the corresponding feature sets at increasingly fine scales as

our displacement estimate improves. 8(h) shows the final

point overlay with the corrected displacement estimate. Note

that using a conventional single scale correspondence and

displacement estimation algorithms [7], [9], we were unable

to establish correspondences of the fine scale features. Thus,

this example shows that the multi-scale approach can signifi-

cantly improve robustness to initial displacement errors while

maintaining accurate displacement estimates.

VII. CONCLUSION

We presented a novel multi-scale scheme to represent point

and line data in planar range scans. Additionally, by way

of examples, we introduced basic tools to use this scheme

to improve the efficiency and/or robustness of some basic

operations that arise frequently in localization and mapping

problems. While we focused on the correspondence and scan

matching problems in this paper, the same methods should also

provide significant benefits to the kidnapped robot problem

as well. We showed that our multi-scale representation, and

its integration into new correspondence and displacement

estimation schemes, can lead to significant improvements in

efficiency in some localization and mapping operations, and

improved robustness in others.
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