3 research outputs found

    A Networking Framework for Multi-Robot Coordination

    Get PDF
    Autonomous robots operating in real environments need to be able to interact with a dynamic world populated with objects, people, and, in general, other agents. The current generation of autonomous robots, such as the ASIMO robot by Honda or the QRIO by Sony, has showed impressive performances in mechanics and control of movements; moreover, recent literature reports encouraging results about the capability of such robots of representing themselves with respect to a dynamic external world, of planning future actions and of evaluating resulting situations in order to make new plans. However, when multiple robots are supposed to operate together, coordination and communication issues arise; while noteworthy results have been achieved with respect to the control of a single robot, novel issues arise when the actions of a robot influence another''s behavior. The increase in computational power available to systems nowadays makes it feasible, and even convenient, to organize them into a single distributed computing environment in order to exploit the synergy among different entities. This is especially true for robot teams, where cooperation is supposed to be the most natural scheme of operation, especially when robots are required to operate in highly constrained scenarios, such as inhospitable sites, remote sites, or indoor environments where strict constraints on intrusiveness must be respected. In this case, computations will be inherently network-centric, and to solve the need for communication inside robot collectives, an efficient network infrastructure must be put into place; once a proper communication channel is established, multiple robots may benefit from the interaction with each other in order to achieve a common goal. The framework presented in this paper adopts a composite networking architecture, in which a hybrid wireless network, composed by commonly available WiFi devices, and the more recently developed wireless sensor networks, operates as a whole in order both to provide a communication backbone for the robots and to extract useful information from the environment. The ad-hoc WiFi backbone allows robots to exchange coordination information among themselves, while also carrying data measurements collected from surrounding environment, and useful for localization or mere data gathering purposes. The proposed framework is called RoboNet, and extends a previously developed robotic tour guide application (Chella et al., 2007) in the context of a multi-robot application; our system allows a team of robots to enhance their perceptive capabilities through coordination obtained via a hybrid communication network; moreover, the same infrastructure allows robots to exchange information so as to coordinate their actions in order to achieve a global common goal. The working scenario considered in this paper consists of a museum setting, where guided tours are to be automatically managed. The museum is arranged both chronologically and topographically, but the sequence of findings to be visited can be rearranged depending on user queries, making a sort of dynamic virtual labyrinth with various itineraries. Therefore, the robots are able to guide visitors both in prearranged tours and in interactive tours, built in itinere depending on the interaction with the visitor: robots are able to rebuild the virtual connection between findings and, consequently, the path to be followed. This paper is organized as follows. Section 2 contains some background on multi-robot coordination, and Section 3 describes the underlying ideas and the motivation behind the proposed architecture, whose details are presented in Sections 4, 5, and 6. A realistic application scenario is described in Section 7, and finally our conclusions are drawn in Section 8

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Multi-robot Interacting Through Wireless Sensor Networks

    No full text
    This paper addresses the issue of coordinating the operations of multiple robots in an indoor environment. The framework presented here uses a composite networking architecture, in which a hybrid wireless network, composed by commonly available WiFi devices, and the more recently developed wireless sensor networks. Such architecture grants robots to enhance their perceptive capabilities and to exchange information so as to coordinate actions in order to achieve a global common goal. The proposed framework is described with reference to an experimental setup that extends a previously developed robotic tour guide application in the context of a multi-robot application
    corecore