8 research outputs found

    Creating virtual models from uncalibrated camera views

    Get PDF
    The reconstruction of photorealistic 3D models from camera views is becoming an ubiquitous element in many applications that simulate physical interaction with the real world. In this paper, we present a low-cost, interactive pipeline aimed at non-expert users, that achieves 3D reconstruction from multiple views acquired with a standard digital camera. 3D models are amenable to access through diverse representation modalities that typically imply trade-offs between level of detail, interaction, and computational costs. Our approach allows users to selectively control the complexity of different surface regions, while requiring only simple 2D image editing operations. An initial reconstruction at coarse resolution is followed by an iterative refining of the surface areas corresponding to the selected regions

    Multiview Stereo Object Reconstruction with a One-Line Search Method

    Get PDF
    published_or_final_versio

    Accurate rough terrain estimation with space-carving kernels

    Full text link

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware

    Modified belief propagation for reconstruction of office environments

    Get PDF
    Belief Propagation (BP) is an algorithm that has found broad application in many areas of computer science. The range of these areas includes Error Correcting Codes, Kalman filters, particle filters, and -- most relevantly -- stereo computer vision. Many of the currently best algorithms for stereo vision benchmarks, e.g. the Middlebury dataset, use Belief Propagation. This dissertation describes improvements to the core algorithm to improve its applicability and usefulness for computer vision applications. A Belief Propagation solution to a computer vision problem is commonly based on specification of a Markov Random Field that it optimizes. Both Markov Random Fields and Belief Propagation have at their core some definition of nodes and neighborhoods' for each node. Each node has a subset of the other nodes defined to be its neighborhood. In common usages for stereo computer vision, the neighborhoods are defined as a pixel's immediate four spatial neighbors. For any given node, this neighborhood definition may or may not be correct for the specific scene. In a setting with video cameras, I expand the neighborhood definition to include corresponding nodes in temporal neighborhoods in addition to spatial neighborhoods. This amplifies the problem of erroneous neighborhood assignments. Part of this dissertation addresses the erroneous neighborhood assignment problem. Often, no single algorithm is always the best. The Markov Random Field formulation appears amiable to integration of other algorithms: I explore that potential here by integrating priors from independent algorithms. This dissertation makes core improvements to BP such that it is more robust to erroneous neighborhood assignments, is more robust in regions with inputs that are near-uniform, and can be biased in a sensitive manner towards higher level priors. These core improvements are demonstrated by the presented results: application to office environments, real-world datasets, and benchmark datasets

    Multi-resolution space carving using level set methods

    No full text
    We present a multi-resolution space carving algorithm that reconstructs a 3D model of visual scene photographed by a calibrated digital camera placed at multiple viewpoints. Our approach employs a level set framework for reconstructing the scene. Unlike most standard space carving approaches, our level set approach produces a smooth reconstruction composed of manifold surfaces. Our method outputs a polygonal model, instead of a collection of voxels. We texturemap the reconstructed geometry using the photographs, and then render the model to produce photo-realistic new views of the scene. 1

    Interactive freeform editing techniques for large-scale, multiresolution level set models

    Get PDF
    Level set methods provide a volumetric implicit surface representation with automatic smooth blending properties and no self-intersections. They can handle arbitrary topology changes easily, and the volumetric implicit representation does not require the surface to be re-adjusted after extreme deformations. Even though they have found some use in movie productions and some medical applications, level set models are not highly utilized in either special effects industry or medical science. Lack of interactive modeling tools makes working with level set models difficult for people in these application areas.This dissertation describes techniques and algorithms for interactive freeform editing of large-scale, multiresolution level set models. Algorithms are developed to map intuitive user interactions into level set speed functions producing specific, desired surface movements. Data structures for efficient representation of very high resolution volume datasets and associated algorithms for rapid access and processing of the information within the data structures are explained. A hierarchical, multiresolution representation of level set models that allows for rapid decomposition and reconstruction of the complete full-resolution model is created for an editing framework that allows level-of-detail editing. We have developed a framework that identifies surface details prior to editing and introduces them back afterwards. Combining these two features provides a detail-preserving level set editing capability that may be used for multi-resolution modeling and texture transfer. Given the complex data structures that are required to represent large-scale, multiresolution level set models and the compute-intensive numerical methods to evaluate them, optimization techniques and algorithms have been developed to evaluate and display the dynamic isosurface embedded in the volumetric data.Ph.D., Computer Science -- Drexel University, 201
    corecore