4 research outputs found

    Geosystemics View of Earthquakes

    Get PDF
    Earthquakes are the most energetic phenomena in the lithosphere: their study and comprehension are greatly worth doing because of the obvious importance for society. Geosystemics intends to study the Earth system as a whole, looking at the possible couplings among the different geo-layers, i.e., from the earth’s interior to the above atmosphere. It uses specific universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms (e.g., ground,marine or satellite observations). Itsmain objective is to understand the particular phenomenon of interest from a holistic point of view. Central is the use of entropy, together with other physical quantities that will be introduced case by case. In this paper, we will deal with earthquakes, as final part of a long-term chain of processes involving, not only the interaction between different components of the Earth’s interior but also the coupling of the solid earth with the above neutral or ionized atmosphere, and finally culminating with the main rupture along the fault of concern. Particular emphasis will be given to some Italian seismic sequences.Publishedid 4121A. Geomagnetismo e PaleomagnetismoJCR Journa

    Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management

    Get PDF
    The number of scientific studies that consider possible applications of remotely piloted aircraft systems (RPASs) for the management of natural hazards effects and the identification of occurred damages strongly increased in the last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of the literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPASs can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes such as landslides or volcanic activities but can also define the effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazard

    Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process

    Get PDF
    Ionospheric and atmospheric anomalies registered around the time of strong earthquakes in low-latitude regions are reported now regularly. Majority of these reports have the character of case studies without clear physical mechanism proposed. Here we try to present the general conception of low-latitude effects using the results of the recent author’s publications, including also rethinking the earlier results interpreted basing on recently established background physical mechanisms of anomalies generation. It should be underlined that only processes initiated by earthquake preparation are considered. Segregation of low-latitude regions for special consideration is connected with the important role of ionospheric equatorial anomaly in the seismoionospheric coupling and specific character of low-latitude earthquake initiated effects. Three main specific features can be marked in low-latitude ionospheric anomalies manifestation: the presence of magnetic conjugacy in majority of cases, local longitudinal asymmetry of effects observed in ionosphere in relation to the vertical projection of epicenter onto ionosphere, and equatorial anomaly reaction even on earthquakes outside equatorial anomaly (i.e., 30–40 LAT). The equality of effects morphology regardless they observed over land or over sea implies only one possible explanation that these anomalies are initiated by gaseous emanations from the Earth crust, and radon plays the major role

    Filling the sensor gap: applying UAS technology to land-use research

    Get PDF
    Collecting data at ground level typically yields the most detailed information on a subject, however it is limited by the spatial extent that can be covered within a specific timeframe. Remote sensing from an aerial platform increases this spatial extent and the deployment of unmanned aircraft systems (UAS) can provide this ability directly to researchers at an affordable cost and at data resolutions that are very applicable for site specific surveys. Further to this, developments in photogrammetry software allow the creation of orthorectified spectral and structural data that can that can be classified via pixel or object-based analysis methods and applied to a wide variety of different land-use research areas. In this study a sensor package was created consisting of two off the shelf digital cameras, one un-modified and the other modified to be sensitive to near infra-red wavelengths of light. A multi-rotor aerial platform utilising an open source autopilot was assembled to enable data collection and a processing pipeline was devised to transform RAW camera imagery into georeferenced and orthorectified data, using computer vision software following the structure from motion (SfM) approach. This remote sensing tool was applied to a variety of land-use research study sites in central Scotland and Northern England with two main areas focused on. (1) The use of spectral and structural data for the detection of disease within a potato (Solanum tuberosum L.) crop revealed that UAS could be an effective tool for mapping the distribution of diseased plants. (2) Comparisons between aerial data and traditional manual assessments of a trial crop of potatoes revealed that the earliest stages of plant emergence could not be detected but later plant counts, and ground cover estimates correlated well, indicating that UAS could be an effective trials monitoring tool, giving extra structural data and potentially a more representative measure of canopy ground cover compared to traditional manual techniques. This study also showed results from experimental applications investigating the mapping of invasive non-native species and ways of enabling upscaling of greenhouse gas emissions from different land use types. Therefore, this study demonstrates that UAS equipped with basic imaging technology can be of use to a variety of land-use research areas and look set to become an invaluable remote sensing tool, which will improve further with the addition of calibrated multi-spectral sensor payloads, high precision global navigation satellite systems and relaxation in regulations governing their use
    corecore