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Lay summary 
 
The rapid development of unmanned aircraft systems (drones) has resulted in these 

small aircraft being much easier to operate, through the use of tablet computers or 

phones, allowing the aircraft to fly themselves. They can be bought as “ready to fly” 

for a price that is within reach of most people. Drones are potentially very useful 

tools for research and education as well as to farmers and people working in 

conservation and the environment, as they allow an overhead view of crops, field 

boundaries, forests and all manner of other types of land, and can fly over difficult 

terrain that would otherwise not be easy to access. 

 
Drones usually only carry ordinary digital cameras, but recent photogrammetry 

techniques (being able to make measurements from photographs) have allowed the 

images captured by drones to be turned into orthomosaics (visual maps of the area 

surveyed) and as these techniques work in a similar way to which we see the world 

(through our stereoscopic vison) they can also be used to create height maps of the 

area surveyed, allowing the development of plants or other features to be measured. 

 
In this study the author designed and built a drone, equipped it with two digital 

cameras, with one modified to capture near infra-red light (which we can normally 

not see) and used it to survey different trials of potatoes. The results indicate that 

drones are very useful tools for monitoring the development of potatoes and can 

detect the onset of disease. Their use would allow more information about the plants 

to be gathered that would lead to improvements in understanding the effects of 

treatments (fertiliser, pesticides etc.) that are normally applied to potato fields. 

 

Further to this the drone was also tested experimentally to enable the mapping of 

invasive non-native species (non-native plants that have spread and taken over from 

native vegetation) and to assist with the identification of greenhouse gas emissions 

from two different types of land use (forestry and grasslands). Both of these 

experimental uses showed promise and indicate that drones equipped with digital 

cameras can be used for a variety of research and monitoring applications.  

 
 

  



iii 
 

Abstract 
 

Collecting data at ground level typically yields the most detailed information on a 

subject, however it is limited by the spatial extent that can be covered within a 

specific timeframe. Remote sensing from an aerial platform increases this spatial 

extent and the deployment of unmanned aircraft systems (UAS) can provide this 

ability directly to researchers at an affordable cost and at data resolutions that are 

very applicable for site specific surveys. Further to this, developments in 

photogrammetry software allow the creation of orthorectified spectral and structural 

data that can that can be classified via pixel or object-based analysis methods and 

applied to a wide variety of different land-use research areas. In this study a sensor 

package was created consisting of two off the shelf digital cameras, one un-modified 

and the other modified to be sensitive to near infra-red wavelengths of light. A multi-

rotor aerial platform utilising an open source autopilot was assembled to enable data 

collection and a processing pipeline was devised to transform RAW camera imagery 

into georeferenced and orthorectified data, using computer vision software following 

the structure from motion (SfM) approach. This remote sensing tool was applied to a 

variety of land-use research study sites in central Scotland and Northern England 

with two main areas focused on. (1) The use of spectral and structural data for the 

detection of disease within a potato (Solanum tuberosum L.) crop revealed that UAS 

could be an effective tool for mapping the distribution of diseased plants. (2) 

Comparisons between aerial data and traditional manual assessments of a trial crop 

of potatoes revealed that the earliest stages of plant emergence could not be 

detected but later plant counts, and ground cover estimates correlated well, 

indicating that UAS could be an effective trials monitoring tool, giving extra structural 

data and potentially a more representative measure of canopy ground cover 

compared to traditional manual techniques. This study also showed results from 

experimental applications investigating the mapping of invasive non-native species 

and ways of enabling upscaling of greenhouse gas emissions from different land 

use types. Therefore, this study demonstrates that UAS equipped with basic 

imaging technology can be of use to a variety of land-use research areas and look 

set to become an invaluable remote sensing tool, which will improve further with the 

addition of calibrated multi-spectral sensor payloads, high precision global 

navigation satellite systems and relaxation in regulations governing their use.  
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Chapter 1. Introduction 

1.1 Definition of a UAS 
Unmanned Aircraft Systems (UAS) are aircraft that are intended to be operated 

remotely and without a pilot on board. They are often termed in different ways, 

including Remotely Piloted Vehicles (RPV), Remotely Operated Aircraft (ROA), 

Unmanned Aerial Vehicles (UAV), Remotely Piloted Aircraft Systems (RPAS), or 

just simply drones, which is a term often used by the media (Colomina & Molina, 

2014). RPAS is the latest term being used by the International Civil Aviation 

Organization (ICAO) to indicate that unmanned vehicles are still controlled by 

people (ICAO, 2018), however the UK’s Civil Aviation Authority (CAA) still currently 

refer to the shorter term of UAS, of which an Unmanned Aircraft (UA), is part of and 

defined as: 

 
“An aircraft which is intended to operate with no human pilot on board, as part of an 
Unmanned Aircraft System. Moreover a UA: 

 is capable of sustained flight by aerodynamic means; 

 is remotely piloted or capable of autonomous operation; 

 is reusable; and 

 is not classified as a guided weapon or similar one-shot device designed for 
the delivery of munitions.” (CAA CAP 722, 2015) 

 
A UAS is further defined by the CAA as: 
 
“An Unmanned Aircraft System (UAS) comprises individual 'System Elements' 
consisting of the Unmanned Aircraft (UA) and any other System Elements 
necessary to enable flight, such as a Remote Pilot Station, Communication Link and 
Launch and Recovery Element. There may be multiple UAs, RPS or Launch and 
Recovery Elements within a UAS.” (CAA CAP 722, 2015) 
 

1.2 Remote sensing from an aerial platform 
Remote sensing (RS) is the science (and art) of gathering information about an 

object from a distance (Aber, 2010), through observing its radiative qualities within 

the electromagnetic spectrum. This can be achieved through the use of a wide 

variety of sensors (e.g. cameras or spectrometers), deployed from numerous types 

of platform (e.g. aircraft, satellites, or just a human). The sensors can be passive 

(e.g. digital cameras), relying on the reflective properties of objects at the current 

environmental conditions (e.g. the amount of sunlight), or they can be active (e.g. 

LIDAR; Light Detection and Ranging), where electromagnetic pulses are emitted by 

the sensor and the reflections of those pulses are recorded (Colomina & Molina, 

2014). 
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RS from an aerial viewpoint essentially started in 1858 by the French photographer 

and balloonist, Gaspar Felix Tournachon, known as "Nadar", who captured scenes 

of a French village from a hot air balloon 80 m up in the air (figure 1-1a; Rees, 

2013). This naturally evolved into the taking of images from aircraft to produce 

maps, with numerous developments from the First World War onwards (Stichelbaut, 

2006; figure 1-1b), before the development of space-based imaging from satellites 

orbiting the earth, resulting in the Landsat series of satellites (from 1972; figure 1-

1c). These were the first satellites designed specifically to monitor the Earth’s 

surface for civilian purposes and used a multi-spectral imager to captured images 

covering narrow bands of the electromagnetic spectrum (Bernstein, 1976), allowing 

a wealth of research possibilities. 

 

  
 

Figure 1-1: (A) "Nadar élevant la Photographie à la hauteur de l'Art" (Nadar 
elevating Photography to Art). Lithograph by Honoré Daumier, appearing in Le 
Boulevard, May 25, 1863 (Brooklyn Museum, 2004); (B) A sergeant of the Royal 
Flying Corps demonstrates a C type aerial reconnaissance camera fixed to the 
fuselage of a BE2c aircraft, 1916 (© IWM (Q 33850); IWM, 2018); (C) a sketch of 
the Landsat 1 satellite (NASA, 2018). 
 

1.3 A brief history of UAS 
Cook (2007) outlines the history of development of UAS, which unsurprisingly 

started life as a tool to aid in warfare. Essentially the first concepts of UAS were 

developed shortly after manned flight, as remote control of planes was achieved 

during the First World War (around 1916) leading to the development of remotely 

operated weapons (Cook, 2007) such as Archibald Montgomery Low’s “Ruston 

Proctor Aerial Target” (Hardin & Jensen, 2011). These developments continued into 

the Second World War, with the Germans developing V-1 flying bomb, and 

continuing since then. Their development is still seen as being key for both remote 

reconnaissance and delivery of guided munitions, as they only cost a fraction of a 

A B 
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manned aircraft and can therefore be used in more hostile conditions without the 

concern of having pilots killed or captured should the aircraft be shot down (Cook, 

2007). 

 
From the late nineteen-seventies, some researchers saw the potential in using this 

technology for remote sensing (Colomina & Molina, 2014), however the explosion in 

use of UAS for civilian purposes has occurred over the last decade, with multiple 

types of UAS being developed and used (figure 1-2). This was due to advances in 

the miniaturisation of the electronic components required to operate UAS, the 

battery technology used to power many of them, the low cost of effective airframes 

and the availability of low-powered micro radio transmitters and has led to an 

increase in the use of UAS for numerous different research and commercial 

activities (Chao et al. 2010; Colomina & Molina, 2014; Chabot, 2018). 

 

  

 
Figure 1-2: Example UAS of the three main types of UAS that have been used for 
remote sensing over the last decade; (A) a helicopter UAS (RPH2; Subaru, Tokyo, 
Japan) used to study riverbeds (Nagai et al., 2007); (B) A multi-rotor UAS (custom 
built) used to study heathlands (Gademer et al. 2010; (C) A fixed wing UAS (custom 
built) used to study tropical wildlife (Koh & Wich, 2012). 
 

1.4 UAS and the regulations governing their use 
There are many different types of UAS, including balloons, kites, blimps, fixed wing 

aircraft, helicopters and multi-rotor aircraft.  They can vary in both size and capability 

but from a regulatory standpoint it is their mass that is important, and within the 

United Kingdom (UK) they classified into three broad categories (table 1-1). 

Regulations governing the use of UAS differ around the world (with some countries 

currently not having any regulations concerning their use), but for the purposes of 

this project only the UK regulations are of concern. 

  

A B 

C 
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Table 1-1: Mass categories for UAS and to which regulatory 
body they apply to. (SUA are small unmanned aircraft and 
EASA is the European Aviation Safety Agency) 
 

Mass 
Category 

Mass (kg) 
Responsible Regulatory 

Body 
SUA 0-20 National Aviation Authority 

Light UAS > 20 to 150 National Aviation Authority 
UAS > 150 EASA 

 

 
The full regulations covering the operation of full size UAS and light UAS are out 

with the scope of this project as they require airworthiness certificates (CAA CAP 

722, 2015), making the aircraft themselves essentially as expensive (or more so) to 

operate as conventional manned aircraft (Everaerts, 2009). They include aircraft 

such as Global Hawk (Northrop Grumman, Virginia, USA; figure 1-3a), a full size 

UAS with a 24-hour endurance and has been used for a variety of research 

purposes including by NASA to monitor hurricanes at very high altitudes (Braun, 

2016). In contrast to this, Hodgson et al. (2013) used a ScanEagle (Insitu Inc., 

Washington, USA; an SUA that also has a 24-hour endurance; figure 1-3b) to 

monitor marine mammals off the coast of Australia, but from a much lower altitude. 

 

  
Figure 1-3: (A) NASA’s Global Hawk being readied for deployment to track 
Hurricane Mathew in 2016 (Hughes, 2016); (B) a Boeing Insitu ScanEagle 
entangled within in its arresting cable used for landing (Hodgson et al., 2013); The 
size of both aircraft can be seen in relation to the ground support crew. 
 
The regulations regarding small unmanned aircraft (which will be termed as UAS 

from this point onwards) are laid out in The Air Navigation Order 2016 (ANO2016) 

and the very recently released The Air Navigation (Amendment) Order 2018 

(ANAO2018), to ensure that UAS cannot interfere with more conventional flights and 

are not a danger to the general public. However, these restrictions cause some 

issues for UAS operators as they limit the way in which the UAS can be used, 

A B 
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primarily as the UA must be within un-aided visual sight of the operator, meaning 

that missions must be planned to take account for this. 

 
The main articles within the amended ANO2016, are 241, 94 (and 94 A~G) and 95, 

which essentially restrict the use of UAS based off of three take-off mass categories 

(this mass includes payload and batteries, but not fuel). The key article (241) that 

applies to all mass categories is that the UAS must not endanger persons or 

property, with table 1-2 outlining the general restrictions for these different mass 

categories (specifically for UAS equipped with a camera, there are more subtleties 

that are not listed).  

 
Table 1-2: General restrictions for the use of UAS with a mass of 0~20 kg within the 
UK. * Indicates that this regulation does not come into effect until November 2019. 
 

Take-off mass < 250 g 
250 ~ 7 

kg 
> 7kg ~ 20 

kg 
Registration required* No Yes Yes 
Competency verified* No Yes Yes 
Maximum altitude AGL 400 feet 400 feet 400 feet 
Maximum distance from operator 
(must be within visual line of site) 

500 m 500 m 500 m 

Minimum distance from an airport 
boundary 

1 km 1 km 1 km 

Minimum distance from a congested 
area 

150 m 150 m 150 m 

Minimum distance from crowds of 
more than 1000 people 

150 m 150 m 150 m 

Minimum distance from people 50 m 50 m 50 m 
Minimum distance from vessels, 
vehicles and structures 

50 m 50 m 50 m 

Limitations to flying within controlled 
airspace 

No No Yes 
 

 
There are further restrictions based on whether the operation is considered 

commercial work or not (i.e. being paid for the data produced from the UAS). If this 

is the case, the UAS operator must have completed a certification course with a 

National Qualified Entity, that includes ground and aerial based assessment (CAA 

CAP 722, 2015), however once completed this also reduces the requirement to stay 

150 m away from congested (e.g. urban) areas, to just 50 m. Other concessions can 

also be made via consultation and agreement with the CAA, such as increasing the 

distance from the operator from visual line of site (VLOS, which is typically to a 

maximum of 500 m) to extended visual line of site (EVLOS), although this would still 

require observers (more flight crew) to be able to maintain VLOS to the aircraft (CAA 
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CAP 722, 2015). Beyond visual line of site (BVLOS) UAS operation is currently only 

permitted within segregated airspace (airspace specifically for UAS operations). 

 
Whether university research using UAS is considered as commercial work is a grey 

area, however the CAA have clarified this with the below statement: 

 
“Whilst every case should be judged on its own merits, some types of arrangements 
are not generally considered by the CAA to be Commercial Operations: 
 

 Any other imagery or data collection task where the video, photographic stills 
or other data collected, are used exclusively for the drone operator’s own 
use. 

 
Example: A university research team wants to use a drone to gather survey 
data or imagery to help with their research project. This is legitimate as long 
as the research project was not directly funded by a business that intends to 
use the results of the data for its own business purposes (including any 
material or research into its products or services). Clearly university research 
is funded through a variety of means (grants, charitable and alumni 
donations, etc) and for varying purposes. The exact arrangements would 
need to be considered in each case. Where an academic organisation is 
openly advertising their capabilities to external organisations and a business 
relationship is entered into with an external organisation, the use of a drone 
for that purpose is likely to be construed as Commercial Operations. In order 
to alleviate difficulties with varied funding models, universities and other 
similar organisations should consider applying for permission from the CAA 
so that their services can be offered without constraint.” (CAA, 2018). 

 

1.5 The pros and cons of using a UAS for remote sensing 
Due to the regulations covering UAS operations in the UK, the size of area that 

could be surveyed within a single flight is considerably smaller (~1 km2) than what 

could be achieved by using a manned aircraft, which depending on their size are 

capable of collect regional scale imagery (up to 10,000 km2), or satellites, which can 

provide global coverage (Everaerts, 2009). However, both of these more traditional 

platforms can be inoperable in cloudy conditions as the cloud obscures the ground 

(for satellites more so than manned aircraft) and the resolution of the data produced 

is not always high enough for certain tasks (Koh & Wich, 2012; Matese et al., 2015). 

Typically, the resolution of optical data is within the 1~30 m per pixel range for 

satellites and 0.1~1 m per pixel for manned aircraft, but if the objects to be 

monitored are only a few cm in diameter (e.g. the emergence of agricultural crops), 

then these resolutions would not be sufficient, as to effectively recognise an object it 

must be viewed at a resolution 3-5 times finer than its size (Aber et al., 2010). 
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This gives some advantages to the use of UAS, as they are restricted to low altitude 

flights, so clouds are not usually an issue (they are operating below cloud level) and 

the spatial resolution of optical data is considerably higher, typically within 0.01~0.1 

m per pixel (Zhang & Kovacs, 2012). Cost and flexibility is also a significant factor, 

as UAS (with a mass of < 20 kg) have quite low purchasing and operational costs 

when compared to the acquisition of data from satellites and manned aircraft, the 

latter of which also typically require scheduling in advance, reducing their flexibility 

(Everaerts, 2009; Husson et al. 2014; Zhang & Kovacs, 2012). This low cost and 

flexibility in use of UAS improves the chances of reliable temporal data collection, as 

a UAS can be deployed whenever the weather conditions are suitable (Zhang & 

Kovacs, 2012; Husson et al. 2014, Shahbazi et al. 2014). 

 
There are however disadvantages, as the aircraft are considerably smaller their 

payload capacity is also reduced and therefore choice of sensors is more limited or 

compromised compared to the larger sensors available to manned aircraft or 

satellites (i.e. less spectral resolution; Zhang & Kovacs, 2012; Shahbazi et al. 2014). 

There are also limitations relating to the weather as small UAS are less capable of 

handling high wind speeds and are often not waterproof and due to restrictions in 

regulations they have a reduced spatial footprint of data collected per flight, 

potentially requiring more flights to cover the area of interest, which in turn can lead 

to increased time and cost of data processing (Zhang & Kovacs, 2012; Shahbazi et 

al. 2014). 

 

1.6 Photogrammetry 
Despite the reduced payload capacity of UAS a range of sensors are available, 

including multi-spectral, hyperspectral and thermal cameras, however out of all the 

different sensors that can be deployed on a UAS, standard digital cameras are 

considered to be the most available and have been widely adopted in many studies 

(Colomina & Molina, 2014). In order to take measurements from images captured 

from a UAS the science of photogrammetry has to be employed (making precise 

measurements of three-dimensional objects from two-dimensional photographs), 

which has been in existence for approximately 150 years, essentially since 

photography itself was invented (Aber et al., 2010). Relatively recent advances in 

computer vision techniques have enabled software to be created that use the 

principles of photogrammetry to produce detailed three-dimensional (3D) models of 
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the scene being viewed from essentially unordered collections of two-dimensional 

(2D) digital images (Snavely et al., 2008; Dandois & Ellis, 2010). 

 
One of the main techniques used is termed Structure from Motion (SfM; Ullman, 

1979), which requires that the imagery to be processed is overlapping. The 

movement of the camera with the overlapping imagery allows the extraction of key 

points (matching feature points in one image to the next; figure 1-4) using other 

computer vision algorithms such as scale-invariant feature transform (SIFT; Lowe, 

1999), which allow matching points to be found despite changes in scale between 

images (Whitehead & Hugenholtz, 2014). Once these key points have been 

identified, the location, orientation and internal parameters of the camera (e.g. focal 

length, the principal point location and lens distortion coefficients) can be identified 

and optimized using bundle adjustment of all of the images to produce a sparse 3D 

point cloud of the scene viewed (Dandois & Ellis, 2010; Verhoeven et al., 2012).   

 

 
Figure 1-4: Example of identification of 3D points from four sperate but overlapping 
2D images (Sweeny, 2016). 
 
Further algorithms can then be used to densify and then convert this point cloud into 

a digital surface model (DSM), a 2D image showing a height model of the scene, 

which in turn can be used to orthorectify each image (the geometric correction of an 
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image to a known surface) and mosaic them together into a single orthomosaic of 

the scene viewed (Verhoeven et al., 2012). Open source and commercial software 

is available to process imagery using these techniques, which are ideally suited to 

the imagery produced from a UAS and can allow relatively high levels of automation 

(Whitehead & Hugenholtz, 2014). 

 

1.7 Classification and analysis 
To be able to effectively utilise the data produced from these photogrammetry 

processes, other software is required that can extract the salient information, 

through interrogation of the spectral and spatial aspects of the imagery. For 

instance, in a sunlit scene, the material (features) within a surface being viewed will 

exhibit differing spectral characteristics, as the features will either reflect, absorb, 

transmit, emit or scatter different regions of the electromagnetic spectrum. These 

spectral characteristics are termed spectral signatures (typical reflectance 

properties) and can be used to identify one feature from another depending on the 

sensor being used and its spectral resolution (Govender et al., 2007). 

 
An initial stage of this is often thresholding of the imagery to separate it into the 

features of interest (e.g. vegetation) from those that are not (e.g. soil) and is typically 

done via the application of a vegetation index (VI) (Govender et al., 2007). There are 

many different VIs covering a large range of different spectral wavelengths and the 

selection of a suitable VI will be based on the type of sensor available, its spectral 

characteristics (what wavelengths of light it can sense) and the spectral signature of 

the features being investigated. For instance, the spectral signature of green 

vegetation shows low reflectance for red wavelengths of the electromagnetic 

spectrum, with a high reflectance of NIR wavelengths (in stark contrast to dry soil; 

figure 1-5a). This means that a VI such as the normalised difference vegetation 

index (NDVI; Rouse et al., 1973) is ideal to enable the effective separation of 

vegetation from soil, as it highlights the difference between red and near infra-red 

(NIR) reflectance (Rabatel et al., 2014). 
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Figure 1-5: (A) Example spectral signatures of green vegetation, dry bare soil and 
clear water (Govender et al., 2007); (B) Example spectral signatures of varying 
types of vegetation, including healthy grass (green) and dry, yellowed grass 
(orange) (Govender et al., 2007). 
 
Different types of vegetation will have unique spectral signatures, which will vary 

depending on the health of the plants (figure 1-5b), as the variation within vegetation 

for the visual portion of the electromagnetic spectrum (lower reflectance of red and 

blue wavelengths) is due to the absorption by chlorophyll as part of the plants 

photosynthesis. If photosynthesis is disrupted for some reason (e.g. disease) then 

the amount of chlorophyll could be reduced, altering the plants spectral signature 

(Govender et al., 2007). 

 
These spectral signatures can be used as part of a classification process, to identify 

what features are present within a scene being viewed. Computer software to 

enable this classification follows two main forms, either pixel based, where each 

pixel is queried directly and classified depending on its spectral value, or object 

based, where pixels are grouped into objects and the mean of their value 

determines the classification (Blaschke, 2010). Although pixel-based methods are 

generally faster to implement, they can result in ‘salt and pepper’ noise in the final 

classification of very high-resolution imagery (Blaschke, 2010; Weih et al., 2010) 

due to intra-class variations (e.g. gaps and shadows within a canopy; Torres-

Sánchez et al., 2015). 

 
Therefore, for imagery derived from a UAS, object-based image analysis (OBIA) is 

the preferred method for classification, as different segmentation algorithms can be 

used to split the scene into distinct objects (e.g. individual plants; Torres-Sánchez et 

al., 2015). The mean of the spectral information for each object can be queried as 

well as spatial and contextual information, such as object height (if a height model 

was available), or the presence or distance to other objects that may have already 

been classified, as well as the shape and texture (the change in frequency and 

A 
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pattern of tones) of an object (Blaschke et al., 2014). Other sources of data can also 

be used as part of an OBIA classification (e.g. other thematic layers such as ground 

sourced information) and the classification routine can be automated once defined, 

making OBIA a very powerful classification tool for which both open source and 

commercial software solutions are available. 

 

1.8 Rise in research using UAS 
Although there are disadvantages in using UAS over other platforms for RS, 

researcher’ enthusiasm in embracing this new technology has not been dampened, 

as a review by Shahbazi et al. (2014) shows a steady increase in the number of 

published papers making use of UAS for natural resource management from 

2000~2013 (figure 1-6a), with agriculture being the topic most pursued (figure 1-6b).  

Further to this a recent study by Chabot (2018) again shows an increase in the 

number of papers referencing UAS (figure 1-6c), with the largest area being that of 

engineering (i.e. the development of UAS themselves), although agriculture and 

environmental sciences feature strongly indicating that the development of these 

platforms and how they can be used is continuing apace. 

 

  

 
Figure 1-6: (A) The number of publications from 2000~2013 that have utilised UAS 
for natural resource management (Shahbazi et al. 2014); (B) The specific fields of 
research publications in (A) were based on (Shahbazi et al. 2014); (C) The number 
of publications from 2013~2017 that are related to the development and use of UAS 
(Chabot, 2018). 
 

C A 

B 
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1.9 Example uses of UAS as remote sensing platforms 
Due to the flexibility of small UAS, they have been used across a wide range of 

research disciplines and over a wide variety of geographical locations. For instance, 

Lucieer et al. (2014) used a multirotor UAS equipped with a digital camera to 

produce highly detailed digital surface models of Antarctic moss in the Windmill 

Islands region, East Antarctica. These could then be used to identify the hydrology 

of the area and its influence on the health of the moss. In complete contrast to this, 

Mori et al. (2016) also used a multirotor UAS equipped with gas sensing equipment 

to sample the plume from an active volcano (Mt. Ontake, Japan), where the results 

indicated a likely lessening of volcanic activity. 

 
For wildlife research, Chabot & Bird (2012) used fixed wing UAS to survey flocks of 

Canada geese (Branta canadensis) and snow geese (Chen caerulescens) during 

their spring migration in Quebec, Canada. They confirmed that the UAS did not 

cause a disturbance to the flocks and the camera they used was more effective in 

counting snow geese over Canada geese. Koh & Wich (2012) also used a fixed 

wing UAS to survey varied stretches of tropical rainforest in the Gunung Leuser 

National Park in Sumatra, Indonesia. They successfully used the imagery produced 

to identify different land uses that were occurring (e.g. logging, habitation and palm 

tree plantations) as well as being able to detect large mammals such as the critically 

endangered Sumatran orangutan (Pongo abelii). 

 
UAS can also be used to aid relief efforts when humanitarian disasters occur as the 

aircraft can be deployed rapidly to collect imagery over an impacted city, providing 

up to date data on the state of buildings, roads, bridges and other infrastructure that 

can help inform the relief response. Xu et al. (2014) successfully demonstrated such 

a system directly after an Ms7.0 earthquake occurred in Lushan County, Sichuan 

Province, China, covering some 25 km2 of affected area using a fixed wing UAS. In 

contrast, Fernández‐Hernandez et al. (2015) demonstrated the effectiveness of 

using small multirotor UAS as an archaeological tool, producing high resolution and 

accurate digital elevation maps of an Iron Age hillfort (Las Cogotas) in Ávila, Spain, 

enabling many measurements of the site to be made.   

 
Different types of vegetation have also been monitored using UAS, such as 

identifying the condition and species composition (with accuracies of over 80 %) of 

aquatic habitats (the riparian zone) of two lakes and a river system in Northern 
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Sweden using a fixed wing UAS (Husson et al., 2014). Jensen & Mathews (2016) 

also used a fixed wing UAS to identify the variability of forest canopy height, with 

high levels of correlation with ground-based measurements (R2 ≥ 0.89) over Central 

Texas, USA. However, one of the larger areas of research using UAS to survey 

vegetation is for precision agriculture (Shahbazi et al., 2014; Chabot, 2018) 

 

1.10 UAS and precision agriculture 
Precision agriculture (PA) makes use of remote sensing and other techniques, 

including the use of satellite imagery, aerial imagery, tools such as geographical 

information systems (GIS) and global navigation satellite systems (GNSS), to 

identify variations in soil and crop qualities at site specific levels, to enable more 

effective management decision to be made using agricultural vehicles that are 

designed to allow a more targeted application of crop treatments (e.g. fertilizer and 

pesticide; McLoud et al., 2007; Zhang & Kovacs, 2012). 

 
Many studies have already been made using UAS for PA, including weed detection 

(Peña et al. 2015; Pérez-Ortiz et al., 2016), monitoring crop biomass using spectral 

means (Honkavaara et al. 2013) and through the identification of crop height 

(Bendig et al., 2014; Bendig et al., 2015), identification of water status and stress 

(Baluja et al., 2012; Kyratzis et al., 2017) and monitoring for the spread of disease 

(Sugiura et al., 2016; Albetis et al., 2017). Various sensors have also been 

employed to enable PA from UAS, including standard digital cameras (Torres-

Sánchez et al., 2014; von Buren et al. 2015), modified digital cameras that are 

sensitive to near infra-red wavelengths of light (Hunt et al., 2011; von Buren et al. 

2015), narrow band multispectral cameras (Baluja et al., 2012; von Buren et al. 

2015; Torres-Sánchez et al., 2013), hyperspectral cameras (Honkavaara et al. 

2013), thermal cameras (Baluja et al. 2012; Chapman et al. 2014) and standalone 

spectrometers (Link et al. 2013; von Buren et al. 2015). 

 
A range of different types of crops have already been investigated to identify if UAS 

can be effectively used for PA (Zhang & Kovacs, 2012), including some of the key 

crops for Scottish agriculture, such as spring barley, winter wheat, potatoes and oil 

seed rape (Scottish Government, 2018). For instance, a study by Rasmussen et al. 

(2018), investigated the ability of pre-harvest weed mapping for both wheat and 

barley crops, using in-expensive commercial availably UAS and standard digital 

cameras. Their pixel-based classification approach gave accuracies above 90% 
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showing that easily available UAS technology can be used effectively to cover field 

scale (10 ha) areas and provide weed maps that can be used to control weed 

species such as creeping thistle (Cirsium arvense). However, their classification 

solution was not fully automatic (it required manual thresholding), so highlights the 

limitations of un-calibrated standard digital cameras. 

 

For potatoes, late blight (Phytophtora infestans) is one of the key diseases to effect 

potato crops in Scotland (SRUC, 2019c). Recently a study by Duarte-Carvajalino et 

al. (2018) used a commercially available multirotor UAS equipped with a modified 

digital camera (to enable the detection of near infra-red wavelengths) to detect the 

presence of late blight. Their analysis routine used a deep learning convolutional 

neural network (a machine learning algorithm) to identify the severity of late blight 

infection and their results suggest that it would be effective enough to replace the 

visual estimation that is typically carried out on the ground. Due to the requirements 

of the deep learning algorithm requiring large numbers of training samples (a time-

consuming manual process), their method still needs more work. It also only 

considered late blight being the source of any disease, however it shows promise 

that machine learning can be used to assist with fungicide management decisions to 

thwart this particular disease. 

 

For yield assessment, an interesting study by Wan et al. (2018) used digital and 

multispectral cameras with a pixel-based classification method to identify the 

number of flowers present from an oil seed rape crop (which can give an estimate of 

oil yield). The results using the digital camera showed a high correlation (r2 = 0.89) 

indicating that this method was effective at identifying potential yield and that this 

assessment could be improved with these two sensors used in conjunction, as 

further plant growth measures could then also be identified (i.e. not just the number 

of flowers). However, their UAS had to be flown very low and slow to obtain effective 

data capture, limiting its commercial potential, as it could only be used to cover 

small areas. 

 

Therefore, UAS appear to be well placed to add value to PA however as Zhang & 

Kovacs (2012) point out, to gain traction with the farming community their use needs 

to be easy to implement, give timely results that can be easily integrated into 

existing management and application systems, and most importantly are cheap to 
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operate and give a good cost to benefit ratio. To enable this, the UAS technology 

itself and the regulations governing their use will play a part but the technology 

behind the processing and analysis of the data captured is key to enabling the 

adoption of this technology. 

 

1.11 Project aims 
Essentially all the elements required to perform RS via UAS are in place, from the 

regulations to govern their use, to methods to enable data collection, processing and 

classification that can be used to identify the state of features that are being 

remotely sensed. Therefore, given the rise in use of UAS in many applications, this 

study sets out to determine how low-cost UAS could be developed and applied in 

situations relevant to land management that are in concordance with the research, 

education and consultancy aims of Scotland’s Rural College (SRUC). 

 

“SRUC exists to deliver comprehensive skills, education and business support for 

Scotland’s land-based industries, founded on world class and sector-leading 

research, education and consultancy. The integration of these three complementary 

‘knowledge exchange’ services is of significant value to all with an interest in land-

based activities – be they learners, businesses, communities or policy-makers” 

(SRUC, 2019a). 

 

SRUC’s mission is to “drive the future needs of a dynamic, innovative and 

competitive rural sector in Scotland and to solve the biggest global agrifood 

challenges” with a vision to be “a unique, market-led and mission diverse 21st 

Century rural university” (SRUC, 2019b). The areas of research undertaken at 

SRUC covers a wide range of rural concerns, including rural policy, animal and 

veterinary science, environmental science and crop and soils science and they have 

four overarching global aims: 

 

 “To create SRUC academic resources which have national impact and global 
influence. 

 To be an international leader in land-based research and consultancy 
services. 

 To be a sustainable, well-resourced organisation with exemplary 
environmental credentials and real ownership amongst students, staff and 
stakeholders. 

 To continue to build on our assets and reputation.” (SRUC, 2019b) 
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Given the wide range of research activities undertaken at SRUC, the areas of 

environmental science and crop and soils science were identified as those that 

would directly benefit from the application of UAS technology, and so were 

addressed through the following broad objectives: 

 
1. Identify, assemble and test a sensor package that can be applied to a variety 

of land use areas that are key to SRUC research aims. 

 
2. Determine the UAS requirements of key SRUC research aims, and design, 

build and test an appropriate UAS that can accommodate the sensor 

package. 

 
3. Determine software requirements linked to sensor and data requirements, 

and design appropriate data processing workflows. 

 
4. Through collaboration with existing projects, demonstrate the utility of UAS 

acquired data to these projects by addressing specific questions within those 

projects. 

 

1.12 Project outline 
This introductory chapter has given an overview of RS and how UAS are being used 

as a new tool to enable the deployment of sensors at low altitude, giving very high-

resolution data that was not easily available prior to the introduction of UAS. 

 

Chapter 2 explores the identification and modification of a sensor package using 

consumer off the shelf (COTS) digital cameras, that could be used to capture data of 

over different land-use types for a variety of research aims. The spectral 

characteristics of the cameras (and others) are explored to identify how they could 

be used. 

 
Chapter 3 investigates the design and testing of a custom built UAS, the integration 

of the sensor package and tests to reveal the limitations of the design in relation to 

flight planning and mission design. Further development and analysis are also 

carried out on the sensor package to identify how the imagery can be processed to 

produce a final product that will enable further analysis to occur, including an 

investigation into the geometric qualities of the processed data outputs. 
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Chapter 4 applies the UAS to the detection of disease within a trial plot of potatoes 

over time. This novel application of a UAS includes modelling of the development of 

individual plants over time, making use of the structural changes in the plants to 

indicate the onset of disease. The resulting accuracy of disease detection is 

indicated as effective but still requiring further development for real world 

application.  

 
Chapter 5 is a time series investigation using the UAS to monitor the development 

of trial plot of potatoes, to be able to indicate the timing of emergence and 

estimation of canopy ground cover. The results were compared with traditional 

ground-based assessment revealing that emergence detection is not as sensitive 

(due to image resolution) but canopy cover estimation correlated well, despite a high 

level of weeds within the trial. 

 
Chapter 6 investigates the environmental concerns of invasive non-native species 

and utilises the UAS to monitor the spread of one such species (giant hogweed), 

along a riparian habitat. The classification accuracy of this pilot study indicates that 

more work is required but it highlights the potential benefits that could be gained 

from identifying the species ability to spread to neighbouring areas. 

 
Chapter 7 demonstrates how UAS could be used to assist in measures to mitigate 

climate change. The exploratory studies highlight how the UAS can be used to 

detect topographical features from two different land use types (forestry and 

grasslands), which in turn can be used to upscale expected greenhouse gas 

emissions. 

 
Chapter 8 discusses the output from the studies in the earlier chapters and 

highlights areas that are effective or need further exploration. It also details areas of 

collaboration to show the utility and applicability of UAS to a range of different land 

use areas and finally concludes this thesis with an indication of what may come to 

pass in the future with regards to UAS. 
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Chapter 2. Sensor selection, modification and testing 

2.1 Introduction 
The primary purpose of most UAS is as some form of data collection platform, so 

identifying a sensor package that will fulfil the intended task, is within available 

budget and is as light as possible is required. For this PhD project the main focus of 

the research was to construct a remote sensing platform that could be used 

primarily for surveying and classifying vegetation, so that features such as plant 

growth, weed and disease detection, and other areas important to the agricultural 

and environmental aims of SRUC could be facilitated. Therefore, being able to 

capture a scene in NIR as well as visual wavelengths would be preferred as this 

would enable the use of a wider range vegetation indices (e.g. NDVI), allowing the 

use of potentially more effective methods for separating vegetation from soil 

(Rabatel et al., 2014). Ideally a dedicated multispectral camera such as the 

Tetracam Mini-MCA (Tetracam Inc, California, USA) would have been selected, as 

this has already been used successfully to investigate disease resistance in a sugar 

beet crop (Bendig et al., 2012), water stress within a vineyard (Baluja et al., 2012), 

and Antarctic moss plant health (Turner et al., 2014). 

 
However, this sensor was well beyond the available budget and was quite heavy at 

~720 g for the 6-sensor version (Bending et al., 2012). Further studies by Von 

Bueren et al. (2015), looking at the variability of ryegrass pasture and Torres-

Sánchez et al. (2013) identifying weeds within a sunflower crop, also used this senor 

and compared it with modified and un-modified consumer of the shelf (COTS) digital 

cameras. These studies both showed that COTS cameras give the advantage of 

higher spatial resolution but with a reduced spectral resolution due to the COTS 

cameras broad band nature. Due to the budgetary constraints of the project, using 

COTS cameras seemed obvious, especially as Von Bueren et al. (2014), and others 

(Rabatel et al., 2014; Lebourgeois et al., 2008; Dare, 2008) had already 

demonstrated that they could be modified to capture near infra-red (NIR) 

wavelengths of light, thereby increasing their spectral resolution. 

 
This chapter address the 1st objective of this PhD project, as it details the 

identification and characterisation of sensors that were then used as the primary 

sensor package for all other chapters within this thesis. 
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2.2 Sensor choice 
There were four main deciding points for the selection of suitable sensors for this 

project; (1) they had to be relatively light weight; (2) they had to be within a very 

limited budget (ideally less than £100); (3) they had to be modifiable in order to 

become sensitive to NIR wavelengths and (4) they need to be able to capture raw 

image files (RAW), as RAW imagery can be processed in a linear fashion rendering 

it more suitable to quantitative analysis compared to Joint Photographic Experts 

Group (JPEG) imagery (Lebourgeois et al., 2008; Verhoeven, 2010). 

 
Most consumer grade digital cameras use CMOS (complementary metal-oxide-

semiconductor) or CCD (charge coupled device) sensors, which are essentially 

monochrome sensors that use photodiodes which are typically sensitive to 

wavelengths of light from 350 nm to 1100 nm (Nijland et al., 2014, Hunt et al., 2011). 

These can be made sensitive to specific wavelengths of light through the use of a 

colour filter array (CFA) positioned above the photodiodes of the sensor itself 

(Verhoeven, 2010). These CFAs can allow a variety of different wavelengths of light 

to pass through to the sensor (figure 2-1), however one of the most commonly used 

is the Bayer colour filter array (Bayer, 1976) which has twice as many green filters 

compared to red or blue, as green wavelengths are more important to the human 

visual system when picking out visual details (Verhoeven, 2010) 

 

 
Figure 2-1: Examples of different colour filter arrays; (RGB) Red-Green-Blue Bayer 
pattern; (CMY) Cyan-magenta-yellow; (RGBE) Red-Green-Blue-Emerald 
(Verhoeven, 2010). 
 
The Bayer CFA allows the sensor to capture red, green and blue wavelengths of 

light and output 3 colour channels (layers) that are combined and processed within 

the camera for elements such as white balance and sharpness, to produce the 

visually appealing JPEG imagery one would expect from a digital camera. However, 

if RAW imagery is being captured then the process of creating an image can be 
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manipulated, allowing customisation of how the pixels of each colour channel are 

reproduced, which can permit the creation of images with a linear response that 

have not been interpolated to the same extent that a typical JPEG image would 

have been (Verhoeven, 2009; Verhoeven, 2010). 

 
Most of the digital cameras available that could capture RAW imagery were either 

well outside of the budget available or were older digital single-lens reflex (DSLR) 

type cameras that were too heavy to be deployed effectively on a small UAS. 

However, some cheaper consumer grade “point and shoot” cameras made by 

Canon can have their firmware modified to enable the capture of RAW imagery, 

even though the default camera firmware does not officially support it (CHDK, 

2018a). This opened several possibilities as cheaper, light weight “point and shoot” 

style cameras could therefore be modified to not only capture RAW imagery, but 

also run custom scripts such as an intervalometer to allow the continuous capture of 

data, which would also be a very favourable feature to have within a camera system 

onboard an UAS. 

 
As the human visual system is most responsive to the visual range of the 

electromagnetic spectrum around 400 nm to 720 nm (Palczewska et al., 2014; figure 

2-2), ideally images produced from a digital camera should also be within this range. 

As the CMOS and CCD sensors within digital cameras are sensitive to NIR and the 

CFA itself does not fully block these longer wavelengths, digital cameras have an 

internal NIR blocking filter in order to produce images that represent a scene as 

humans would see it. Removing this filter allows the full spectrum of the sensor to 

be accessed as demonstrated by Lebourgeois et al. (2008), Dare (2008) and Nijland 

et al. (2014) on larger DSLR type cameras, however the more compact “point and 

shoot” style cameras can also be modified, the results of which have been recorded 

through the citizen science webpages of Public Labs (PublicLabs, 2018). 

 
Therefore, two Canon A2200 (Canon, Tokyo, Japan) digital cameras were selected 

for the main sensors used in this project as they met the four main requirements. (1) 

They were relatively light weight (135 g each); (2) they were very cheap when 

bought second hand (~£25 each); (3) they had been shown to be modifiable to allow 

the capture of NIR wavelengths (Horning, 2012) and (4) their firmware could be 

modified to allow them to capture RAW imagery (CHDK, 2018b). The cameras 

themselves have an integrated 5~20 mm zoom lens (28~114 mm, 35 mm 
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equivalent), a fixed aperture (f2.8~5.9, depending on zoom) and can produce a 

14.1-megapixel image using a compact 1/2.3 inch CCD sensor. They also have an 

audio/visual output port that can be used to transmit the current view of the camera, 

and a mini universal serial bus (USB) port which can be used to trigger the camera, 

both of which would be of benefit as part of a UAS. 

 

 
Figure 2-2: Electromagnetic spectrum (Ronan, 2007).  
 

2.3 Sensor modification 
One of the cameras was left un-modified and the other had its internal NIR filter 

removed so that the sensor was sensitive to its full spectral range. Previous studies 

by Lebourgeois et al. (2008) and Dare (2008) have shown that all three colour 

channels of modified digital cameras are usually sensitive to NIR wavelengths, 

although Hunt et al. (2011) indicates that this is not true for all types of digital 

camera. Therefore, an additional filter is required on the modified camera in order to 

obtain at least one colour channel that only captures NIR wavelengths. Two 

potential ways of achieving this are through the use of a band rejection filter that can 

effectively block certain wavelengths (e.g. red light), such as that used by Hunt et al. 

(2011), or through the use of a long pass filter that attenuates shorter wavelengths 

(e.g. blue light or everything below the NIR range) as shown by Rabatel et al. (2014) 

and others (Dare, 2008; Nijland et al., 2014). 

 
As the studies by Rabatel et al. (2014), Lebourgeois et al. (2008), Dare (2008) all 

used Canon cameras that showed that all three colour channels were sensitive to 

NIR, the decision was made to use a long pass filter for the modified camera that 
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would block any blue wavelengths of light, so an acrylic long pass filter with a 

transmission range of 585 nm to 2200 nm was selected for testing (figure 2-3a). This 

acrylic filter was chosen as it was considerably cheaper than attempting to get a 

custom-made filter that would fit inside the camera and was thinner, lighter and had 

slightly higher and flatter transmission profile up to 1100 nm compared to a glass 

filter of similar size and spectral qualities (figure 2-3b). Ideally a 550 nm long pass 

filter would have been selected as this would have allowed green, red and NIR 

wavelengths to be captured whilst rejecting blue (Nijland et al., 2014), however this 

could not be sourced. 

 

  
Figure 2-3: Transmission profiles of the (A) acrylic 585 nm cut-on long pass filter 
(KnightOptical, 2018a) and (B) glass 590 nm cut-on long pass filter (KnightOptical, 
2018b). 
 
The filter was 1 mm thick and 25 mm in diameter, making it an almost exact match 

to the dimensions of the lens housing on the Canon A2200 and so could be easily 

mounted externally with some adhesive (figure 2-4). Both cameras were equipped 

with 16 GB, class 10 secure digital memory cards (SanDisk, Milpitas, California) 

which had the Canon Hack Development (CHDK) v1.2 (CHDK, 2018a) installed and 

configured to allow the simultaneous capture of JPEG and RAW imagery in Adobe 

DNG format (v1.3). The cameras could be triggered to take a picture via the use of 

the shutter button on the camera itself or remotely by applying a 5 volt pulse to the 

cameras USB port. 
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Figure 2-4: The unmodified camera (a) and modified camera (b).  
 

2.4 Spectral sensitivity testing 
Although the typical spectral sensitivity of a digital camera is expected to be from 

350 nm to 1100 nm (Nijland et al., 2014; Hunt et al., 2011) the actual response of 

the Canon cameras was not known as this information was not provided by the 

camera manufacturer. Bongiorno et al. (2013) used a linear variable edge filter (a 

spatially varying bandpass optical filter that passes wavelengths of light from 380nm 

to 745nm) to identify the spectral sensitivity of an un-modified Canon A2000 (likely 

to be very similar to the A2200), however this camera was only capturing JPEG 

imagery and still had its internal NIR blocking filter, so the full spectral response 

when capturing RAW imagery was also unknown. 

 
The method typically used to identify spectral sensitivity is to take images of a 

monochromatic light source, which can be altered to output different wavelengths of 

light (Darrodi et al., 2015; Jiang et al., 2013; Suzuki et al., 2009; Verhoeven et al., 

2009). Therefore, an experiment was undertaken in collaboration with Elias Berra 

(Newcastle University) and Alasdair MacArthur (The University of Edinburgh), 

making use of the laboratory facilities of the Natural Environment Research Council 

Field Spectroscopy Facility (NERC FSF) based at The University of Edinburgh. Both 

of the Canon A2200’s and several other camera models were tested, and a paper 

detailing the results (Berra et al., 2015; see below) was submitted and presented at 

the Unmanned Aerial Vehicles in Geomatics conference in Canada, August 2015. 
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2.5.1 Abstract 
Commercial off-the-shelf (COTS) digital cameras on-board unmanned aerial 

vehicles (UAVs) have the potential to be used as multispectral imaging systems; 

however, their spectral sensitivity is usually unknown and needs to be either 

measured or estimated.  This paper details a step by step methodology for 

identifying the spectral sensitivity of modified (to be response to near infra-red 

wavelengths) and un-modified COTS digital cameras, showing the results of its 

application for three different models of camera.  Six digital still cameras, which are 

being used as imaging systems on-board different UAVs, were selected to have 

their spectral sensitivities measured by a monochromator. Each camera was 

exposed to monochromatic light ranging from 370 nm to 1100 nm in 10 nm steps, 

with images of each step recorded in RAW format.  The RAW images were 

converted linearly into TIFF images using DCRaw, an open-source program, before 

being batch processed through ImageJ (also open-source), which calculated the 

mean and standard deviation values from each of the red-green-blue (RGB) 

channels over a fixed central region within each image. These mean values were 

then related to the relative spectral radiance from the monochromator and its 

integrating sphere, in order to obtain the relative spectral response (RSR) for each 

of the cameras colour channels.  It was found that different un-modified camera 

models present very different RSR in some channels, and one of the modified 

cameras showed a response that was unexpected.  This highlights the need to 

determine the RSR of a camera before using it for any quantitative studies.  
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2.5.2 Introduction 
A new era of fine-scale remote sensing has emerged with the arrival of unmanned 

aerial vehicles (UAVs), which have the advantage of being lightweight, low-cost and 

operationally easy to deploy as safe remote sensing acquisition platforms (Berni et 

al., 2009; Zhang & Kovacs, 2012). 

 
Commercial off-the-shelf (COTS) digital cameras are typically used as imaging 

systems on-board UAVs due to their low-cost and researchers often want to make 

further use of them as multispectral imaging systems due to their ability to detect 

near infra-red light (Darrodi et al., 2015; Suzuki et al., 2009; Lebourgeois et al., 

2008), once modified by removing the hot mirror filter (Rabatel et al., 2014; 

Verhoeven et al., 2009).   

 
However, this is hampered by a lack of knowledge of the spectral sensitivity of the 

camera, as COTS camera manufacturers typically do not publish this information.  

Also, when cameras have been modified (with the addition of a long pass or notch 

filter) by an external party, the wavelengths that could be transmitted through that 

filter are also not always known (as is the case with two of the modified cameras in 

this study). Therefore, users need to either measure or estimate their cameras 

sensitivity (Darrodi et al., 2015; Jiang et al., 2013). 

 
A standard and accurate methodology for measuring the sensor sensitivities is to 

take photographs of monochromatic light produced by a monochromator (Darrodi et 

al,. 2015), where the digital numbers (DN) recorded on the images are expected to 

have a linear response to the radiation output of the monochromator (Verhoeven et 

al., 2009). 
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Even though previous studies have measured the spectral function of different 

digital still cameras using monochromators (Darrodi et al., 2015; Jiang et al., 2013; 

Suzuki et al., 2009; Verhoeven et al., 2009), there is a lack of a detailed 

methodology in how to do so, which has motivated us to present an open-source 

workflow to process the images after image acquisition. In this paper, we aim to 

identify and to present a step-by-step methodology for identifying the spectral 

sensitivity of modified and un-modified low-cost digital cameras using open source 

software, in order for them to be used as multispectral cameras for UAV systems 

and compare the results for a range of COTS and modified cameras. 

 

2.5.3 Methodology 

2.5.3.1 Camera types and settings 
Six physical cameras (two of each model), which have been used as imaging 

systems on-board different UAVs, were selected for spectral sensitivity estimation. 

The cameras were either un-modified and therefore only sensitive to visible light 

(VIS) or modified (MOD) to also be sensitive to near infra-red (NIR) wavelengths.  

The modified cameras have had their internal NIR filter removed, thereby turning 

them into a full spectrum (FS) camera, which was then replaced with either an 

internal or external long pass or notch filter to alter the cameras spectral 

sensitivities. 

 
A preliminary image acquisition of monochromatic light was carried out in order to 

determine the optimal settings for each camera, as presented in Table 1. For each 

of the cameras, the ISO was set to 100 in order to gain a high signal to noise ratio, 

and the aperture and shutter speed were altered to ensure that the image was not 

overexposed.  The optimal exposure settings were chosen when the monochromatic 

light with the highest signal intensity (~540 nm for VIS and between 600~700 nm for 

NIR) came close too (but not actually) saturating the images digital numbers (DN). 

 
The defined settings (table 2-1) were then kept unchanged throughout the 

acquisition period and the images were recorded in both JPEG and RAW formats. 

RAW format is necessary as it assumes that the cameras sensor detects and stores 

radiance without applying any processing or compression to it, i.e. the original signal 

reaching the sensor is not modified (Verhoeven, 2010). 
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Table 2-1: Camera types, exposure settings and modifications. Each camera used 
an ISO of 100 throughout the experiment. 
 

Camera 
Model 

Aperture; 
Shutter Speed 

Short Name; 
Notes 

Panasonic 
DMCLX5 

f-2; 
1/5 

PAN_VIS 
-Un-modified 

Panasonic 
DMCLX5 

f-2; 
1/3.2 

PAN_MOD 
-No internal NIR filter 

-External long pass filter (manufacturer and cut 
on wavelength not known) 

Canon 
A2200 

f-2.8; 
1/2 

CAN_VIS 
-Un-modified 

Canon 
A2200 

f-2.8; 
1/2 

CAN_MOD 
-No internal NIR filter 

Canon 
A2200 

f-2.8; 
1/2 

CAN_MOD_585 
-No internal NIR filter 

-External acrylic long pass filter, 585 nm cut on 
(KnightOptical, 2018a) 

Sony 
Nex7 

f-2.8; 
1/5 

SON_VIS 
-Un-modified  

-HGX 49 mm UV filter 

Sony 
Nex7 

f-2.8; 
1/3 

SON_MOD 
-No internal NIR filter 

-Internal notch filter (MaxMax LDP LCC G-R-
NIR, exact transmission properties not known) 

- HGX 49 mm UV filter 
 

 
Both the Panasonic and Sony cameras were able to record JPEG and RAW files 

natively; however, the Canon camera could not.  Therefore, modified firmware 

(CHDK v1.2; CHDK, 2018a) was used to allow JPEG and RAW (Adobe DNG v1.3 

format) images to be produced, as well as to allow the shutter speed to be set at a 

constant value.  

 

2.5.3.2 Monochromatic light image acquisition 
The spectral sensitivities of each camera were measured by recording their 

response to monochromatic light produced by a double monochromator (OL 750-M-

D Double Grating Monochromator (Additive), Optronic Laboratories, Inc., Orlando, 

Florida, USA) and reflected by an integrating sphere attached at the 

monochromators exit slit. The light beam is reflected by the spheres interior surface 

from where images were acquired through a detection port in the integrating sphere 

(figure 2-5).  
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Figure 2-5: The monochromator and camera setup and three example images of 
the inside of the integrating sphere at different wavelengths. 
 
The monochromator was located in a temperature-controlled dark room and the lens 

of each camera was positioned touching the integrating spheres detection port.  The 

sphere and camera were also covered by a low reflectance black cloth in order to 

avoid any external light contaminating the result. 

 
Each camera was exposed to monochromatic light ranging from 370 nm to 1100 nm 

in 10 nm steps, with two images being captured at each step (most of the cameras 

were tested across only a portion of this complete range). Therefore, the selected 

nominal half bandwidth (HBW) was 10 nm (using 1200 g/mm gratings), which is 

achieved by combining 5 mm slits at the entrance, middle and exit ports (Optronic, 

2002).  Due to the range of wavelengths being sampled, it was also necessary to 

vary the lamp voltage and the type of internal filter used. The settings selected on 

the monochromator and the wavelength interval from which images were acquired 

to measure the cameras spectral response, are presented in table 2-2. 

 
Table 2-2: Monochromator lamp voltage and internal filter settings used for specific 
wavelengths being sampled. 
 

Lamp Voltage (v) 19 17 17 

Filter (nm) 345 345 599 

Wavelengths sampled (nm) 370-500 510-620 630-1100 
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Dark images were also acquired for the Panasonic cameras in order to correct for 

effects of noise create by the dark current signal (Verhoeven et al., 2009). 

Photographs were taken inside the dark room with the camera lens covered by the 

black cloth and the room light switched off. 

 

2.5.3.3 Imaging processing 
Each camera recorded its RAW image file using a different format dependant on the 

camera manufacturer, so the open source software DCRaw (v9.25; Coffin, 2018) 

was used to convert the RAW files into TIFF images that maintained a linear 

relationship with the original RAW data (Gehrke & Greiwe, 2014; Verhoeven et al., 

2009). During this step, the Panasonic images were also corrected for the effects of 

the dark current signal as DCRaw can utilise the dark image taken at the same time 

as the images of monochromatic light, generating dark-corrected linear TIFF 

images. The script command used with explanation is present in Appendix A. 

 
The TIFF image DNs were averaged within a 9 x 9 pixel area in the centre of each 

image, in order to avoid issues related with the variance of the radiance within the 

integrating sphere and any differences in the individual pixel response across each 

camera’s image sensor (Darrodi et al., 2015). To obtain the mean and standard 

deviation values from the 9x9 pixel window of each image, a macro was created 

using the open source software ImageJ (v1.49k, Fiji distribution; Schindelin et al., 

2012).  Figure 2-6 details the workflow used to capture these values and a detailed 

step-by-step guide is presented in Appendix A and the ImageJ macro script used is 

presented in Appendix A. 
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RAW and JPEG images converted to TIFF 
using DCRAW 

 
 

TIFF images split into three channels using an 
ImageJ macro 

 
 

TIFF images cropped to a 9x9 pixel window (at 
the centre of each image) using an ImageJ 

macro 

 
 

TIFF images analysed using ImageJ measure 
function to obtain mean pixel value and 

standard deviation 

 
Figure 2-6: Post processing steps to convert 
RAW and JPEG images and to obtain mean 
and standard deviation digital number values for 
further analysis. 

 

2.5.3.4 Retrieving RSR from the cameras 
The light intensity from the monochromator and its integrating sphere were 

independently measured using a reference silicon photodiode (OL DH-300C S/N: 

12101253, Optronic Laboratories, Inc., Orlando, Florida, USA) in order to identify the 

relative spectral radiance at each measured wavelength (figure 2-7a).  The settings 

used mirrored those used at the image acquisition phase (table 2-2).  

 
Two lamps voltages were used (figure 2-7b), with the 17 V lamp was used in 

combination with the 345 nm and 599 nm filter, however for the lower wavelengths 

(<500 nm) the lamp voltage was increased to 19 V in order to generate 

monochromatic light with an intensity that would be strong enough to be detected by 

the cameras sensors on wavelengths ~400 nm.  This is because the CCD (charge 

coupled device) or CMOS (complimentary metal oxide semiconductor) sensors 

which are usually fitted in COTS cameras are likely to sense wavelengths lower than 

400 nm (Nijland et al., 2014).  

 
The RSR of the RGB channels for a given wavelength λ were calculated as per Eq. 

2-1 (Suzuki et al,. 2009) and a linear relationship between the input radiance and 

the output signal is assumed (Darrodi et al., 2015).   
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𝑅(𝜆) = 𝜂
𝑟(𝜆)

𝐼(𝜆)
,   𝐺(𝜆) = 𝜂

𝑔(𝜆)

𝐼(𝜆)
,   𝐵(𝜆) = 𝜂

𝑏(𝜆)

𝐼(𝜆)
  (2-1) 

 
Where r, g, and b = the mean spectral response from each camera channel (red, 

green and blue channels, respectively) given in DN values and calculated 
from the 9x9 window (output signal); 
I = the light intensity (monochromator and sphere) given in relative spectral 
radiance units (input radiance); 
η = the normalized coefficient. 

 
Instead of using absolute physical units, the η coefficient is applied to generate a 

relative spectral response, as it results in lower calibration uncertainties (Darrodi et 

al., 2015).  For each camera, the mean spectral response over all of the 

wavelengths were normalized (η) by the maximum signal detected among the RGB 

channels, yielding dimensionless units with a peak equal to 1. 

 

 

 
Figure 2-7: The responsivity of the silicon photodiode (A); The relative spectral 
radiance of the monochromator at given voltages using specific filters (B). 
 
 

A 

B 
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2.5.4 Results 
All of the un-modified cameras showed similar ranges within the visual spectrum as 

would be expected (400~700 nm; Figure 2-8), with almost all of the RGB channels 

covering this range but with varying degrees of sensitivity. The green channel for 

each camera showed the highest peak response due likely to all cameras being 

using a Bayer colour filter array, which has twice as many green filters compared to 

red or blue, as this more closely resembles how the human eye sees the world 

(Lebourgeois et al., 2008; Verhoeven, 2010) and improves luminance sampling and 

image sharpness (Verhoeven et al., 2009; Verhoeven, 2010). 

 
However, a closer analysis on both shape and intensity of the RSR curves reveals 

differences among the camera models, and most noticeable are the differences of 

the Sony cameras compared to the other two models (Figure 2-8). The red channel 

of the Sony camera (Figure 2-8c) has a much lower peak response (0.58) compared 

to Panasonic (Figure 2-8a) and Canon (Figure 2-8b) red channels, which both peak 

with a response of ~0.8.  The green channel curve of the Sony also shows a 

narrower shape than both Panasonic and Canon.  For the blue channel, the Canon 

and Sony tend to have very low sensitivity after around ~560 nm; however, the 

Panasonic keeps on sensing until around 680 nm. 
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Figure 2-8: Spectral responses from the un-modified Panasonic (A), Canon (B) and 
Sony (C) cameras, normailised to the peak value of each cameras green channel. 
 
  

A 
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The FS Canon camera (figure 2-9) shows the full spectral sensitivity of the Canon 

sensor, with responses from 370~1020 nm for all of the channels, revealing the 

expected COTS cameras sensitivity to NIR wavelengths when the internal NIR 

blocking filter is removed (Verhoeven et al., 2009). The blue channel has a very low 

response from 560~770 nm with a peak at 820 nm (well within the NIR band), which 

is accordance with what could be expected from a Bayer filter (Nijland et al., 2014). 

 

 
Figure 2-9: Spectral response for the modified to full spectrum Canon camera 
normalised to the peak of the green channel. 
 
With a 585 nm long pass filter attached to the FS Canon camera (figure 2-10a), the 

NIR peak in the blue channel could potentially be exploited as the blue channel is 

now the only channel that is predominately sensitive to NIR wavelengths and is 

beyond the red edge feature of 700~720 nm (Hunt et al., 2010). This same 

characteristic is not observed with the blue channel of the modified Panasonic 

(figure 2-10b), as its sensitivity increases rapidly after 670 nm, detecting some 

wavelengths within the red region of the spectrum and across the red-edge feature.  

It is noticeable for both cameras (Figure 6) that their blue channels have a much 

lower intensity than the red channels. 

 
Both modified Panasonic and modified Canon cameras have the red channel as the 

most sensitive to NIR light, however the Panasonic peaks at 710 nm, within the red-

edge feature, meanwhile the Canon peaks at 620 nm, within the red region of the 

spectrum (figure 2-10).  The green channels have an intermediate sensitivity 

between blue and red channels (figure 2-10).  
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Figure 2-10: Spectral response for the modified to full spectrum Canon with with a 
585 nm long pass filter (A) and for the modified Panansonic camera (B), both 
normailised to the peak of the red channel. 
 
The red and green channels of the modified Sony camera (figure 2-11) have well 

characterized curves peaking in the green and red wavelengths respectively, that 

are narrower and of a more equal intensity compared to the same channels in the 

un-modified Sony camera (figure 2-8c). The blue channel however has a much 

lower sensitivity than the green and red, with two main peaks at 400 nm and 

830 nm, meaning that this channel may not be suitable to be used as the source of 

a NIR signal. 
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Figure 2-11: Spectral response for the modified Sony camera, normailised to the 
peak of the red channel. 
 

2.5.5 Discussion and conclusions 
The image acquisition method employed is a relatively standard technique, 

variations of which have been employed by numerous studies (Darrodi et al., 2015; 

Jiang et al., 2013; Suzuki et al., 2009; Verhoeven et al., 2009) and is known to give 

accurate results but it does require expensive and specialised laboratory facilities 

and equipment (Bongiorno et al., 2013; Darrodi et al., 2015).  Other methods could 

be employed instead, such as those indicated by Bongiorno et al. (2013), who 

themselves used a linear variable edge filter to characterise the spectral response of 

several COTS cameras; However, they may not be able to cover the entire range of 

wavelengths sampled in this study. 

 
In the image processing stage, the use of DCraw (or a distribution/modification of) 

as a tool to convert RAW images into linear TIFF files is also widely acknowledged 

in the literature (Lebourgeois et al., 2008; Rabatel et al., 2014; Verhoeven et al., 

2009), but often we see the further processing of these converted images using 

proprietary software such as ENVI (Hunt et al., 2010) or MATLAB (Verhoeven et al., 

2009). Using an open source program such as ImageJ to process the images 

means that this technique can be used by anyone, and the macro and batch 

processing options available meant that processing a large volume of images (over 

200 for FS Canon camera alone) is both quick and simple. 

 
The data presented here has not gone through any corrections to account for extra 

noise that may be present, as some of the cameras did not have dark images taken. 

So, the results are representing the response of the sensor to the photons hitting it, 
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plus any dark current signal and bias signal (Verhoeven et al., 2009).  The bias 

signal is likely to be small, but the dark current signal could be quite large depending 

on the temperature at the time of taking the image and the ISO and exposure 

settings used (Verhoeven et al.,2009). 

 
This unwanted noise reduces the signal to noise ratio (SNR) and can be corrected 

for by taking dark images at the same time as momochromatic light image 

acquisition and using DCraw to subtract a dark frame as indicated in Appendix A. 

Other points of possible error that would need to be corrected for are the 

identification and interpolation of bad pixels within the image (pixels that fail to sense 

light levels), which can also be corrected though the use of DCraw, and vigenetting.  

Vignetting is where the brightness of an image reduces away from the centre of the 

image and can be caused due to physical effects of the cameras lens as well as the 

angle of the light source in relation to the lens (Lebourgeois et al., 2008).  The 

reasoning behind having a small and central 9 x 9 pixel sampling window in the 

image processing phase was partly due to this phenomenon and for imagery that is 

to be used for remote sensing this would need to be corrected by following a method 

similar to that of Lebourgeois et al. (2008). 

 
A final source of error that was overlooked at the time of image acquisition is that of 

reflections off of the camera lenses themselves (and any external filters), back into 

the integrating sphere (as the lens was positioned so close to the detection port of 

the integrating sphere).  The properties of any anti-reflective coating of the camera 

lenses or filters used is not known, however it is likely that its effect would be small 

in the visual region of the spectrum and perhaps more pronounced towards the NIR 

region, as the cameras were principally designed to detect visual wavelengths of 

light. 

 
With these potential sources of error acknowledged, the results of the experiment 

can be investigated, and they reveal that the RSR differs between the un-modified 

camera models and therefore we cannot assume that all COTS digital cameras 

have a standard Bayer array response or internal NIR filter response, which echoes 

that of other studies (Darrodi et al., 2015; Jiang et al.; 2013).  Once the spectral 

sensitivity of a camera is known, judgments can be made on what the camera could 

be used for (e.g. vegetation monitoring), how it can be used (e.g. singularly or in 
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combination with another camera) and what filters could be applied in order to 

capture desired wavelengths of light. 

 
For instance, monitoring vegetation with COTS digital cameras usually requires the 

combination of visible and NIR wavelengths in order to exploit the well-known 

spectral characteristics of healthy plant leaves, namely the low reflectance of visible 

wavelengths due to chlorophyll absorption and high reflectance in the NIR 

wavelengths due to plant cell structure.  This behaviour results in a spectral contrast 

which is the basis for many vegetation indices (VI), such as the Normalized 

Difference Vegetation Index (NDVI) (Rouse et al., 1973). 

 
In relation to this Hunt et al. (2010) found that certain colour channels (blue and 

green) of some COTS digital cameras are not very sensitive to NIR wavelengths, 

allowing a red light blocking filter to be used to create a single camera multispectral 

sensor that outputs blue, green and NIR bands and could be used to estimate the 

Green Normalised Difference Vegetation Index (GNDVI) for agricultural crop 

monitoring purposes. 

 
In contrast to Hunt et al. (2010), a study by Rabatel et al. (2014) used a single 

COTS camera with all channels sensitive to NIR (as is the case with the cameras of 

this study) and investigated the use this camera as a multispectral sensor to 

estimate NDVI.  A blue light blocking filter was used to allow NIR wavelengths to be 

captured in the blue channel and red+NIR wavelengths in the red channel.  It 

utilised an orthogonal projection method to simulate the separation of the red and 

NIR wavelengths to allow NDVI estimates to be made of agricultural crops. 

 
Alternatively, two cameras could be combined, one un-modified and the other 

modified to capture NIR, so that separate red and NIR bands can be acquired and 

registered together to allow NDVI estimation (Dare, 2008).  This approach can have 

issues with the geometric alignment of the bands as they come from two separate 

instruments (Dare, 2008), which of course would not be an issue with a single 

camera approach (Rabatel et al. 2014), however the dual camera method has other 

advantages such as more control of the shape of the NIR band, reduced concerns 

about SNR and the fact that standard RGB colour images can be produced at the 

same time (Rabatel et al., 2014). 
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From the results displayed we can say that our three models of camera are sensitive 

to NIR wavelengths of light, and this confirms the common knowledge that COTS 

digital cameras in general are responsive to NIR and could potentially be used as a 

remote sensing tool (Lebourgeois et al., 2008; Rabatel et al., 2014; Suzuki et al., 

2009; Verhoeven et al., 2009).  However, the comparison of the spectral responses 

shows that there might be some implications for combining different cameras or 

combining channels from the same camera. 

 
For the Panasonic cameras in this study, the dual camera method could be applied 

as the red channel from the unmodified Panasonic (Figure 4A) could be used as the 

red band and the red channel from modified Panasonic as the NIR band (Figure 

6B), as it has the highest SNR.  However, there is some overlap between these 

bands, in the region of 650-690 nm, which might cause some band correlation 

(Nijland et al., 2014).  Also, the red channel from the modified Panasonic peaks 

within the red-edge feature (710 nm) and so may not show as strong a NIR 

response compared to longer wavelengths, as green leaves present their maximum 

reflectance after 740 nm (Brandelero et al., 2012). 

 
Likewise, for the Canon cameras, the dual camera method could also be applied as 

the modified camera with a 585 nm filter shows a peak NIR response at ~820 nm 

(Figure 6A), which could prove more useful than that of the Panasonic camera if 

used for vegetation monitoring however, it has a considerably reduced sensitivity 

(~20% compared to the red channel of the same camera) which could lead to issues 

with SNR. Interestingly the single camera method employed by Rabatel et al. (2014) 

could also be attempted with this modified camera, and in conjunction with a dual 

camera setup, allowing comparisons between the two methods to be made. 

 
The modified Sony camera has the most interesting spectral response due to the 

internal notch filter employed, that appears to block wavelengths between 410~510 

nm and 690~790 nm.  It was expected that this camera would be responsive to red 

and green wavelengths (in their respective channels) with NIR wavelengths only 

available in the blue channel.  However, the blue channel also has a peak response 

at 400 nm, meaning that it does not have a predominately NIR response and so may 

not be effective if used with a dual camera or single camera setup.  An alternative 

method will likely have to be devised to make use of this camera’s spectral 

sensitivity. 
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In conclusion, although this paper made use of expensive and sophisticated 

laboratory equipment in order to capture spectral images of known spectral 

radiances, it does also demonstrate a quick and cheap method of processing 

images using open source software in order to identify a cameras spectral 

sensitivity. Our results showed that different COTS cameras might have very 

different sensitivities, which highlights the importance of determining the spectral 

response function if using COTS cameras for quantitative applications. 

 

2.5.6 Acknowledgements 
Thanks to the Natural Environment Research Council Field Spectroscopy Facility 

(NERC FSF) for allowing us to use their laboratory facilities and equipment and 

especially to Christopher MacLellan (NERC FSF) for his advice and help with setting 

up monochromator and identifying its relative spectral radiance per wavelength. E. 

Berra would also to thanks Science without Borders Brazil (grant 1121/13-8) for 

funding his PhD.  

 

2.6 Concluding remarks 
The lightweight nature of the sensors and their ability to be remotely triggered 

means that their deployment could be very flexible, and therefore they could be 

integrated into a variety of UAS types (e.g. multirotor or fixed wing). The 

investigation into the spectral sensitivity of the cameras revealed that the modified 

camera can be used to capture NIR data and therefore, in combination with the un-

modified camera, has utility to aid in vegetation surveys through the use of 

vegetation indexes such as NDVI. However, to satisfy the 1st object of this PhD 

project, further testing is required to fully appreciate the effectiveness of the sensors 

as a combined sensor package, and to identify what limitations may apply. 

  



42 
 

 

  



43 
 

Chapter 3. Aircraft design and image processing 

3.1 Introduction 
At the time of starting this PhD project in 2014 it was more cost effective and 

flexible, from a sensor integration and flight planning perspective, to source 

individual components and build a UAS rather than purchase a ready to fly “off the 

shelf” system. However, due to the rapid pace of development in this technology 

(Heaphy et al., 2017) this is now not necessarily true, as manufacturers of popular 

ready to fly systems such as the DJI Phantom series of multirotor UAS (DJI, 

Shenzhen, China), have increased their aircrafts capability considerably, in both 

flight capability and mission planning, as well as sensor package integration. 

Nonetheless, for maximum understanding of UAS capability, and flexibility in 

operation, being able to build from components can be vital. 

 
This chapter addresses the 1st, 2nd and 3rd objectives of this PhD project as it 

describes building a UAS, including integration of its sensor package and methods 

used to produce orthorectified imagery for further analysis. The UAS created was 

then used as the primary aerial platform to collect and process data for all other 

chapters of this thesis. 

 

3.2 Identifying the type of UAS to use 
As mentioned in chapter 1 UAS come in many different shapes and sizes but for 

many research projects UAS below 7 kg are more likely to be used as these are 

generally cheaper, easier to transport to study locations and have less regulatory 

issues surrounding their use. They are also typically battery powered and generally 

only two types of UAS are used, either rotorcraft or fixed wing, although the use of 

more novel platforms such as powered paragliders can have benefit for certain 

situations (Thamm, 2011; Dunford et al., 2009). One of the main differences 

between rotorcraft and fixed wing designs is that of endurance and speed of flight, 

which may have a large influence on the choice of aircraft type depending on the 

nature of the study being undertaken. 

 
Rotorcraft typically take the form of a multirotor aircraft (figure 3-1a) and are 

arguably the most popular design due to their mechanical simplicity (Dvořák et al., 

2015) as only the rotors are moving. They are relatively easy to operate manually as 

the autopilot stabilises the aircraft allowing it to hover in place or fly at very slow 

speeds if necessary and they can also take off and land vertically (VTOL), so require 
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a minimal amount of space to operate from. Single rotor rotorcraft (helicopters, 

figure 3-1b) share many of these advantages, however are mechanically more 

complex due to the variable pitch nature of their rotor blades and are therefore a 

less commonly seen. 

 

 
  

Figure 3-1: Example UAS; (A) A DJI Phantom 4 Multirotor (DJI, 2018a); (B) Alpha 
800 helicopter (AlphaUAS, 2018); (C) Quest Q200 fixed wing (QuestUAV, 2018a). 
 
Fixed wing aircraft (figure 3-1c) are mechanically more complex compared to 

multirotor designs due to the control needed for flight surfaces (e.g. rudder, elevator, 

ailerons and for some aircraft flaps as well). As the aircraft require constant forward 

flight to avoid stalling, they typically operate at higher airspeeds, so require sensors 

that have a shorter integration to allow effective capture of imagery. This also means 

that they require more attention from the pilot if being controlled manually as they 

cannot be made to hover (Dvořák et al., 2015), although this is not an issue when 

the autopilot is in full command of the aircraft. Depending on their size they also 

require more space for take-off and landing, with smaller aircraft being hand 

launched, but larger, heavier ones requiring assistance (e.g. a catapult launcher) to 

get into the air (figure 3-2) 

 

  
Figure 3-2: (A) A Quest Q200 being bungee launched (QuestUAV, 2018b); (B) A 
Quest DatahawkAG being hand launched (QuestUAV, 2018c). 
 
More recently the concept of hybrid aircraft that have elements of both multirotor 

and fixed designs have started to appear (figure 3-3). At the time of starting this 

project these types of aircraft were very much in the design stage and not mature 

enough to be used as a reliable aerial platform due to the complexity of their design 

A B C 
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but in the future, they are likely to be very popular designs combining the endurance 

of a fixed wing aircraft with the VTOL ability of a multirotor. 

 

 
Figure 3-3:  The FireFLY6 hybrid VTOL UAV 
(BirdsEyeView, 2018) 

 
With this in mind it would seem that multirotor aircraft are far more flexible from a 

sensor deployment perspective, are simpler to operate (both in flight and for take-off 

and landing) and therefore of ideal use for a varied range of applications. However, 

the biggest difference between the two types of aircraft is that of endurance. 

Multirotor aircraft have very limited lift surfaces (essentially just the rotor blades 

themselves) so use far more power to stay airborne compared to a fixed wing 

design that benefits from the lift provided by its wings. Multirotors by their very name 

have multiple rotors (engines) in order to supply enough thrust to keep aircraft 

airborne, typically four (quadcopter), six (hexacopter) or eight (octocopter) rotors are 

used. In contrast a fixed wing will only require one or two rotors to provide enough 

thrust for forward flight. Figure 3-4 shows an example of different multirotor and 

fixed wing designs (both of the shelf and custom made) and the amount of energy 

each one requires during flight and the resulting range (endurance) of each design. 

 

  
Figure 3-4: (A) The energy requirements (Wh per minute) for various fixed wing 
(blue) and multirotor (red) aircraft (Dvořák et al., 2015); (B) The expected endurance 
(km) for various fixed wing (blue) and multirotor (red) aircraft (Dvořák et al., 2015). 
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There is therefore a clear distinction in the use of either a multirotor or fixed wing 

design based on the level of endurance required and if larger areas are to be 

surveyed a fixed wing design would be the obvious choice. However, as this project 

was primarily investigating relatively small areas such as agricultural trials (typically 

< 5 ha) that would require flying at low level and therefore at low airspeeds (to 

enable effective image capture), only multirotor aircraft were considered as the basis 

for the aerial platform for this project. 

 

3.3 Composition of a multirotor aircraft 
A multirotor aircraft is made up of three main parts; (1) the airframe, which is the 

fuselage of the aircraft along with elements such as the landing gear; (2) the 

propulsion system, which includes the motors, electronic speed controllers (ESC), 

propellers and power source (e.g. a battery) and (3) and command and control 

system, which includes a radio control transmitter and receiver (for manual control), 

a ground control station (GCS) with radio telemetry and the autopilot onboard the 

aircraft itself (Quan, 2017). 

 

3.3.1 The airframe 
The simplest type of multirotor airframe is the quadcopter (Sidea et al., 2014; 

Koslosky et al., 2017, Quan, 2017) as its four rotors (with propellers of a fixed pitch) 

allow six degrees of freedom (figure 3-5). This permits transitional movement along 

the X (forward/backward), Y (left/right) and Z (up/down) axes and rotational 

movement around the X (roll), Y (pitch) and Z (yaw) axes (Koslosky et al., 2017).  

 

 
Figure 3-5: Transitional and rotational movement of 
a quadcopter (adapted from Arducopter, 2012). 
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A quadcopter is configured to have counter rotating pairs of rotors so that two 

always spin clockwise and two anticlockwise, counteracting each other and reducing 

the total angular momentum to zero whilst allowing sufficient thrust to counteract 

gravity and allow the aircraft to remain airborne (figure 3-6a). Angular momentum is 

calculated by multiplying the angular velocity by the moment of inertia, therefore 

rotational movement is controlled via changes in the speed (torque) of each rotor. 

For the aircraft to rotate on its Z axis (yaw), one counter rotating pair must decrease 

in speed and the other must increase in speed in order to increase angular 

acceleration around the Z axis whilst maintaining overall thrust (Quan, 2017; 

Koslosky et al., 2017; figure 3-6b).  

 

  
Figure 3-6: (A) Angular momentum is zero with equal thrust on all motors; (B) 
Angular acceleration is increased around the Z axis as one counter rotating pair is 
reduced in speed, whilst the other increases (adapted from Arducopter, 2012). 
 
For the aircraft to move forwards or backwards, the aircraft must rotate along its Y 

axis (pitch) to create a pitch angle by decreasing the speed of the rotor in the 

desired direction of travel and increasing the speed of the rotor in the opposite 

direction in order to maintain overall thrust (figure 3-7a). Likewise, to move the 

aircraft to the left or right, the aircraft must rotate along its X axis (roll) to create a roll 

angle by decreasing the speed of the rotor in the desired direction of travel and 

increasing the speed of the rotor in the opposite direction in order to maintain overall 

thrust (Quan, 2017; Koslosky et al., 2017; figure 3-7b). 
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Figure 3-7: (A) Forward movement due to rotation on the Y axis as rear motor 
speeds up and forward motor slows down; (B) Movement to the right due to rotation 
on the X axis as the left motor speeds up and the right motor slows down (adapted 
from Arducopter, 2012). 
 
The majority of multirotor airframe types follow this same principle of movement but 

simply with a varying number of counter rotating pairs. For instance, hexacopters 

have three counter rotating pairs (figure 3-8a), octocopters have four (figure 3-8c), 

with the extra motors giving the aircraft more lifting capacity (thrust) and redundancy 

should a rotor fail (Quan, 2017) but at the expense of a larger, heavier aircraft that 

uses more power. Not all airframes have their motors orientated in the same 

direction as some designs have coaxial rotors, with each arm of the airframe having 

two motors facing in opposite directions (figure 3-8b & 3-8d). Coaxial airframes 

provide more thrust but from a smaller airframe, however they do suffer some 

penalties in efficiency and thrust compared to airframes with the more typical “flat” 

positing of the rotors, due to the lower propeller being within the prop wash of the 

upper propeller (Bondyra et al., 2016) 

 

 
Figure 3-8: Configuration of different multirotor frames and propeller direction (green 
clockwise, blue anti-clockwise); (A) Hexacopter; (B) Coaxial hexacopter; (C) 
Octocopter; (D) Coaxial octocopter (Ardupilot, 2016a). 
 

3.3.2 The propulsion system 
The propulsion system has to be able to allow the aircraft to maintain stable flight 

and manoeuvre whilst carrying itself and the sensor package and therefore must be 

designed based on the airframe type that has been selected. The propulsion system 
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can be electric, or fuel based (figure 3-9), which can give significant benefits to 

aircraft endurance, however the vast majority of current multirotor aircraft use an 

electrical population system powered by a battery. 

 

 

 

Figure 3-9: (A) The Belias, a prototype heavy lift (10 kg payload) variable pitch petrol 
powered quadcopter with an expected three-hour endurance (Blain, 2017). (B) The 
HYBRiX.20, a prototype hybrid fuel-electric multirotor with a 2.5 kg payload and two-
hour endurance (Quaternium, 2017). 
 

3.3.2.1 Propellers 
Propellers provide the main lifting surface for a multirotor and are made from a 

variety of materials (e.g. plastic, wood or carbon fibre) and come in a variety of 

sizes, blade pitch and numbers of blades, although this is typically only two as this 

configuration is more efficient (Quan, 2017). The materials used dictate the strength 

of the propeller (carbon fibre being the strongest) but also the moment of inertia, as 

lighter propellers will have faster responses to changes in motor speed. The size of 

the propeller (both length and width) dictates how much thrust can be generated, as 

larger propellers create a larger disc area and therefore lifting surface but at the 

expense of requiring more torque from the motor. The blade pitch determines how 

far a propeller will move through the air for each rotation of the motor, with higher 

pitched propellers allowing faster movement if the motor revolutions are the same, 

but again requiring more torque from the motor (Quan, 2017). 

 

3.3.2.2 Motors 
Electric motors also vary in size and abilities, with smaller motors typically producing 

lower torque and being able to spin smaller, shallow pitched propellers at higher 

revolutions per minute (RPM), whereas larger motors with higher torque are able to 

spin larger propellers (with potentially a steeper pitch) but at a slower RPM. The unit 

of measurement used to understand how fast a motor can rotate is termed Kv, 

which indicates the RPM of an unloaded motor (i.e. no propeller) when 1 V (volt) is 
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applied to it (e.g. an unloaded 100 Kv motor will spin at 100 RPM if 1 V is applied to 

it; Quan, 2017). Lower Kv motors (typically < 400 Kv) produce higher torque and so 

can drive larger propellers and are often seen used with larger multirotor platforms 

where higher thrust is required (figure 3-10a). High Kv motors (typically > 1000 Kv) 

have low torque and can only be used with smaller propellers and are typically seen 

used on very small multirotors that are used for recreational activities such as racing 

(figure 3-10b), as the small motor and propeller combination can react faster making 

the aircraft far more agile. 

 

 

 

Figure 3-10: (A) Raven heavy lift coaxial octocopter (VulcanUAV, 2016); (B) Connex 
Falcore mini racing drone (GetFPV, 2018). 
 

3.3.2.3 Electronic speed controllers 
Electronic speed controllers are used to vary the speed of each motor (one ESC is 

connected to each motor) via the pulse width modulated (PWM) signals received 

from the command and control system (the autopilot). ESCs can convert the direct 

current (DC) power source (the battery) into an alternating current (AC) power 

source required to drive the motors. The main parameter of interest with ESC is that 

of their maximum continuous current rating, as depending on the motor and 

propeller combination used, the ESC needs to be able to cope with the expected 

maximum current draw. Typically, ESC overrated by 20 % are used (Quan, 2017), 

so if a motor propeller combination is likely to require 20 amps (A) when running at 

full power, a 24 A ESC will be used to ensure a safety margin. 

 

3.3.2.4 Batteries 
Batteries for multirotors are typically lithium-ion polymer (LiPo) and will have varying 

numbers of cells in series that allow different terminal voltages. LiPo cells have a 

nominal voltage of 3.7 V, which rises to 4.2 V when fully charged (Quan, 2017), so 
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to create a battery that outputs 14.8 V when charged, the LiPo battery must contain 

four cells arranged in series (termed 4S). Batteries can also be arranged in parallel 

to increase capacity whilst maintaining voltage, so the terminology for two, four cell 

batteries in series is 4S2P. The capacity of batteries is usually indicated in milli-

Ampere-hours (mAh) and is an indicator of how long the battery will last (e.g. a 

10,000 mAh battery will last for 1 hour under a 10 A load) and also how much 

current can be drawn from the battery continuously before it fails (its discharge rate; 

eq. 3-1; Quan, 2017). 

 

Discharge Rate (C)  =
Current of Discharge (mA) 

Capacity (mAh)
 (3-1) 

 
The maximum discharge rate of a battery depends on its quality, so batteries that 

are lighter usually have lower C ratings compared to heavier more robust batteries. 

The maximum discharge rate required depends on the number and maximum power 

requirements of the motor propeller combination. For instance, a quadcopter that 

requires 20 A for each motor when running at maximum will need to be able to draw 

80 A and therefore a 4000 mAh battery will need to have a C rating of at least 20 to 

be able to fulfil the motors requirements without failing (4000 mAh x 20C = 80 A). 

Most batteries will give two C ratings, one for continuous current output and a 

second to indicate an allowable burst current output for a very limited time (typically 

twice the continuous current but for only a few seconds). 

 

3.3.2.5 Power distribution 
There also needs to be a way of distributing power from the battery around the 

airframe to each of the motors, the command and control system and any other 

ancillary equipment present.  Typically, this is handled by a power distribution board 

and like the ESCs, the power distribution board also needs to be able to cope with 

the potential maximum current draw from all of the motors and other equipment 

when running at full power. 

 

3.3.3 Command and control system 
To be able to manually control a multirotor, the operator needs to have a radio 

control (RC) transmitter configured with flight sticks and switches to allow movement 

and other actions on the aircraft to be commanded. On the aircraft itself an RC 

receiver is required that can convert those radio signals into a format suitable for the 

autopilot to understand (Quan, 2017). Radio telemetry from the aircraft is often also 
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used to update a ground control station (GCS), so that the status of the aircraft can 

be ascertained (e.g. battery capacity remaining, altitude, speed etc.), but the most 

important command and control system is the autopilot itself (figure 3-11). 

 

 
Figure 3-11:  Expanded diagram showing the major components of a 
multirotor and their connections to a Pixhawk autopilot (Hazelhurst, 2014). 

 

3.3.3.1 Flight controllers (autopilot) and avionics of a quadcopter 
Quadcopters are inherently unstable (Sidea et al., 2014; Lim et al., 2012) as the four 

rotors require constant manipulation in order to maintain stability and allow the 

aircraft to manoeuvre. This would not be possible to control manually so a flight 
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controller (from here in called an autopilot; essentially a small computer) is required 

to handle the thrust requirements of each rotor. The autopilot can vary the speed of 

the motors by communicating with the ESC attached to each motor (figure 3-11), 

however to know what speed changes are necessary an autopilot requires a suite of 

sensors so that it can understand the forces being applied by the aircraft (the results 

of its own commanded movement) and to it (e.g. wind).  

 
The sensor suite is comprised of a number of Micro-Electro-Mechanical Systems 

(MEMS) that are widely used in other electronic devices such as smartphones 

(Loianno et al., 2015). The Inertial Measurement Unit (IMU) provides the quadcopter 

with an understating of its current attitude and is typically comprised of a three axes 

gyroscope to measure rotational changes across each axes; a three axes 

accelerometer to measure acceleration rate along each axes; and a magnetometer 

to measure the magnetic field and identify aircraft heading (Koslosky et al., 2017). 

Further to this a barometer is used to measure altitude and a global navigation 

satellite system (GNSS) receiver is used to provide a 3D position in space. 

 
Within the autopilot a control framework is required in order to analyse and react to 

the information coming from the IMU, barometer and GNSS, which first need to be 

filtered for noise before forming part of the control system. Typically, an Extended 

Kalman Filter (EKF) is used to filter and fuse the different sensor inputs and give a 

current estimated state of the attitude of the aircraft (Quan, 2017; Lim et al., 2012). 

This estimated state then forms part of the control process by being an input within a 

Proportional-Integral-Derivative (PID) control loop feedback mechanism (figure 3-

12). 
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Figure 3-12: Process diagram of a PID control feedback loop (Hanafi et al., 
2013). 

 
The purpose of PID controllers is to correct a difference (error term) between the 

value that has been measured (the process variable; e.g. the current altitude of the 

quadcopter) and the desired value that is required (the set point; e.g. an increase in 

altitude). The proportional element is a gain of this error signal (proportional to the 

error) and will give a large output if the error is large, which the aircraft will respond 

to (i.e. it increases thrust and starts increasing its altitude) with the changes in its 

current attitude being feedback into the PID controller. However, if the gain is set too 

high, then an overshoot of the desired set point could occur (i.e. the aircrafts altitude 

is now higher than desired) leading to an oscillating effect as the PID controller 

attempts get to the desired set point (National Instruments, 2011). 

 
The integral element sums the error term over time, so even a small error will result 

in an eventual change to ensure that the error becomes zero, driving the steady-

state error to zero (the steady-state error is the final difference between the process 

variable and the set point). For instance, the aircraft is requested to hold its position, 

but its altitude is slowly reducing as thrust is not sufficient to maintain a stable 

altitude (e.g. wind is affecting it). Therefore, an increase in thrust would be 

requested that would keep increasing over time until the desired altitude is reached. 

This however can also lead to oscillations, so the derivative element helps to control 

this effect by reducing the output proportionally to the rate of change in the process 

variable as it gets closer to the set point, essentially dampening the outputs made by 

the proportional and integral elements (National Instruments, 2011) 
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Several PID controllers will be used to control the various aspects of the aircraft 

attitude (e.g. roll, pitch, yaw etc.) and all need to be tuned in order for the aircraft to 

be stable in flight. The tuning can vary depending on what role the aircraft is to 

perform, therefore an aircraft to be used for racing would be tuned aggressively so 

that control inputs respond sharply, however an aircraft intended for surveying would 

have more relaxed tuning as a smoother flight response would be desirable. 

 

3.4 Multirotor aircraft design 
In order to design a multirotor that will be able to carry the required sensor package 

whilst giving an endurance sufficient to satisfy the survey requirements, the weight 

of all the components is required. This will then allow identification of thrust to weight 

ratio of the aircraft, which can then be investigated and altered by the selection of 

different motors and propeller sizes. Ideally a thrust to weight ratio of 2:1 is to be 

sought (Portlock & Cubero, 2008), resulting in the aircraft hovering at 50 % of its 

maximum throttle and leaving sufficient remaining thrust for each motor to allow the 

aircraft to manoeuvre effectively and resit environmental factors (e.g. wind). 

 

3.4.1 Sensor package airframe integration 
There are two methods of deploying an optical sensor to a UAS, either fixed mount, 

where the sensors are mounted directly to the aircraft, often at a slight angle to 

compensate for the pitching angle of the aircraft during forward flight or gimbaled 

(figure 3-13). Gimballing a sensor gives more guarantee of nadir image capture as 

changes to the pitch and roll of the aircraft will be compensated for directly, however 

it does add extra weight and further power requirements, both of which will reduce 

the endurance of the aircraft. Capturing nadir imagery is important as different 

surfaces (especially vegetation) do not necessarily reflect light evenly in all 

directions (they are not Lambertian). Their reflective properties are based on the 

angle of incident light and the angle of view of the sensor and can be described 

using complex bidirectional reflectance distribution functions (BRDF; Aber et al., 

2010). 
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Figure 3-13: Side and underside views of a 3DR Solo UAS fitted with 3 axes 
brushless gimbal with GoPro camera attached, and a tilted fixed mount with MAPIR 
camera attached (green camera; MAPIR, 2018). 
 
There are also two main types of gimbal that can be used, either brushless motor 

based (figure 3-13), or servo based, where smaller servo motors are actuated to 

change due to the attitude of the aircraft. Brushless motors give a faster and 

smoother response to changes in the attitude of the aircraft and are the de facto 

standard for videography applications, however they are heavier, typically require a 

separate controller to control all of the axis and can consume more power. As the 

primary purpose of the UAS in this study is as a remote sensing survey platform, the 

decision to use a servo-based gimbal was taken as it would still give more 

guarantees for capturing nadir imagery, whilst not adding too much extra weight 

(figure 3-14a). 

 
To mount the sensor package onto the gimbal, a custom camera rig was created 

from aluminium sheeting that could be used to house both cameras securely, whilst 

still allowing access to the memory cards, batteries USB port, camera screen and 

control buttons (figure 3-14b). Finally, a vibration dampening plate was also used as 

this can help remove vibrations coming from the airframe, which could otherwise 

affect image capture from the sensors (reducing the likelihood of blurred imagery). 

The total weight of the sensor package with its integrating components was ~600 g. 
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Figure 3-14: (A) The 2 axes (roll and pitch) servo-based carbon fibre gimbal; (B) The 
aluminium custom camera rig with two Canon A2200 cameras installed. 
 

3.4.2 Airframe and propulsion system modelling 
With the knowledge of the size and weight of the sensor package and its integrating 

components, a suitable airframe and propulsion system can be selected and 

configured in order to be able to carry it. The web application eCalc (xcopterCalc; 

Muller, 2018a) was used to identify the abilities of a multirotor (once the weight and 

type of all of the components were known), as it models how the multirotor will 

perform based on the inputs given. eCalc gives a good estimation (accuracy of ± 

15%; Muller, 2018a) of the main functions of the aircraft (e.g. thrust to weight ratio, 

maximum speed, endurance etc.) as well as warnings regarding components that 

could be under stress at maximum power (e.g. ESCs, battery etc.). 

 

3.4.3 Existing aircraft - airframe and propulsion system 
At the start of this project the author already had an existing multirotor aircraft (a 

quadcopter, figure 3-15, table 3-1), available from a previous project (Gibson-Poole, 

2013). However, this aircraft was unlikely to produce sufficient thrust to effectively 

carry both cameras at the same time, as eCalc indicated a thrust to weight ratio of 

1.7:1 with an expected all up weight of the aircraft at 2.05 kg when carrying the 

sensor package. Therefore, the aircraft would be able to lift the sensor package but 

would have reduced manoeuvrability and poor endurance (Muller, 2018b), indicating 

that it would not be an ideal option to be used as the main aerial platform for the 

project. However, it was used in a limited capacity to test image capture using only a 

single Canon A2200 (attached to a smaller servo gimbal) and as a videography 

platform using a single GoPro Hero (GoPro, San Mateo, USA) action camera, as 

this is what it had originally been designed to carry. 

 

A B 
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Table 3-1: Limitations of the 
quadcopter when equipped with a 
GoPro camera. 
 

Feature Limitation 
Max flight time 9 minutes 
Max range at 5 

m/s 
2.7 km 

Max speed 9.7 m/s 
Max constant 
wind speed 

5 m/s 

Max gusting 
wind speed 

7.7 m/s 

Max 
temperature 

35 °C 

Min temperature -5 °C 
 

Figure 3-15: The quadcopter equipped with 
GoPro camera in small servo gimbal. 

 

3.4.4 New aircraft - airframe and propulsion system 
As a new aircraft needed to be designed to carry the sensor package effectively, 

extra funding was sought and supplied by SRUC from the Scottish Funding Council 

Knowledge Exchange program. This significant increase in budget allowed for a 

wide choice of airframe and propulsion system components, however as the funding 

had objectives out-with that of this PhD project, it needed to be designed to carry 

potentially heavier and far more expensive sensor packages than those already 

created for this project. 

 

3.4.4.1 Airframe considerations and selection 
With this in mind the type of airframe to be used was limited to an octocopter design 

in order to give maximum redundancy in case of motor, ESC or propeller failure. If a 

single rotor (either, motor, ESC or propeller) fails in a quadcopter, then the aircraft 

will be unlikely to have sufficient thrust to maintain height and will not be able to 

manoeuvre, although algorithms to allow a degree of control (albeit with a rapidly 

rotating aircraft) have been developed (Lanzon et al., 2014; Lippiello et al., 2014). 

Hexacopters and octocopters both a give a level of redundancy in situations such as 

this as more overall thrust is available, and some element of control can still be 

maintained, however an octocopter would give the highest level of redundancy but 

would be a heavier and more expensive aircraft. 

 
To achieve the highest level of thrust and endurance, a “flat” airframe was selected 

instead of a coaxial design and although this would mean having a larger sized 

airframe, this was also seen as an advantage as it allowed the possibility of 
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deploying larger and more cumbersome sensors or other equipment (e.g. testing 

aerial sprayers). The 1080 mm Vulcan Skyhook Octo airframe was selected (Vulcan 

UAV Ltd, Mitcheldean, UK) as this allowed for propeller sizes up to 15 inches in 

diameter to be used and could be fitted with high clearance landing gear (350 mm) 

to provide very stable landing even if carrying bulky sensors or other equipment. 

 

3.4.4.2 Propulsion system considerations and selection 
To avoid potential regulatory issues due to the weight of the aircraft, the decision 

was made to keep the all up weight (AUW; the weight of the entire aircraft, batteries 

and sensors when airborne) of the aircraft to a maximum of 7 kg. This helped 

narrow the potential choice of propulsion system, allowing modelling using eCalc to 

find the lightest and most efficient motor, propeller and battery combination. 

 
The T-Motor U3 700 Kv motor (Tiger Motor, Nanchang, China), paired with T-Motor 

13 x 5 inch beechwood propellers (Tiger Motor, Nanchang, China) were selected as 

this combination gave a thrust to weight ratio of 1.8:1 when at the maximum AUW of 

7 kg. This ratio, whilst not ideal, would still allow the aircraft to manoeuvre effectively 

(Muller, 2018b). Larger propeller sizes could have been used to give higher 

endurance but would have required larger and heavier motors, reducing the overall 

potential sensor payload due to the imposed 7 kg AUW limit. The motors required a 

14.8 V power source to provide the level of thrust required, so Turnigy Multistar 

10,000 mAh 4S LiPo batteries were selected (Hobbyking, Hong Kong, China) as 

they were considerably lighter than most other brands. However, they had a 

maximum discharge rate of 10 C (i.e. 100 A) so two packs needed to be used at the 

same time to provide a sufficient safety margin (in relation to potential maximum 

power draw) whilst increasing total battery capacity. 

 
Finally, T-Motor 35 A ESCs (S-series S35, Tiger Motor, Nanchang, China) were 

selected to ensure a 20 % overhead over the maximum expected current draw of 27 

A per motor and a 250 A power distribution board (Vulcan UAV Ltd, Mitcheldean, 

UK) was used to route power from the batteries to each ESC and motor. 

 

3.4.5 New aircraft - Command and control system considerations and 
selection 

There are many different autopilot systems that can be used within a custom build 

multirotor, however the author had prior experience with systems that make use of 
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the Arducopter flight control firmware (Arducopter, 2018). This firmware is an 

offshoot of the open source Ardupilot project (Lim et al., 2012) and is a continually 

evolving flight control system that is well supported with documentation and web-

based forums that can be used to help diagnose unexpected problems, and crucially 

it allowed full waypoint navigation using GNSS (Lim et al., 2012). 

 
The 3DR Pixhawk autopilot (3D Robotics, Berkeley, USA), was selected as the 

autopilot hardware (figure 3-16a) as it was robust and a well-tested autopilot that 

could make use of the Arducopter firmware. A 3DR UBlox GPS + Compass Module 

(3D Robotics, Berkeley, USA) was selected as the primary navigation sensor, using 

the USA Global Positing System (GPS), and a Piksi (v2) RTK GPS (Swift 

Navigation, San Francisco, USA) was selected as a secondary navigation sensor to 

allow the possibility of gaining centimetre positional accuracy using a real-time 

kinematic (RTK) GPS system (although this was not used in the initial build of the 

aircraft due to autopilot firmware issues at that time). 

 

  
Figure 3-16: (A) 3DR Pixhawk autopilot (3DR, 2018); (B) Example of the mission 
planer GCS primary screen (indicates aircraft attitude via wireless telemetry). 
 
Autopilots running Arducopter firmware can be configured and controlled using a 

variety of different GCS software, however Mission Planner (Oborne, 2016) was 

selected (figure 3-16b) as it had also been used previously by the author and was a 

fully featured and regularly updated GCS software platform that would run on a 

small field notebook computer. To enable telemetry from the aircraft to the GCS, a 

pair of 433 Mhz 3DR Radios (v2; 3D Robotics, Berkeley, USA) were selected and 

equipped with Dipole antennas in order to increase the communication range. 

 
For direct manual control of the aircraft, a 2.4 Ghz FrSky Taranis X9D (FrSky 

Electronic Co. Ltd, Wuxi, China) RC transmitter was selected as it is highly 

A B 
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configurable, allowing customisation of the switches and controls to suit the pilots 

needs. This was paired with a Frysky X8R (FrSky Electronic Co. Ltd, Wuxi, China) 

RC receiver on the aircraft, as this could have up to 16 separate command channels 

configured, allowing for a variety of commands to be ordered directly from the RC 

transmitter if desired. Finally, an ImmersionRC 25 mW 5.8 Ghz video transmitter 

with clover antenna (ImmersionRC, Hong Kong, China) was installed on the aircraft 

to allow video transmission from the sensor package to an ImmersionRC Uno V2 

5800 5.8 Ghz video receiver (ImmersionRC, Hong Kong, China). The output from 

this receiver could be viewed through the GCS, allowing the pilot to see in real time 

the extent of view from the sensor package. 

 

3.4.6 New aircraft – Build 
The initial build, configuration and ground testing of the aircraft took approximately 

four days to go from a selection of parts (figure 3-17a) to a complete aircraft ready 

for flight testing (figure 3-17b). Due to the modular nature of the frame, the build 

itself was fairly simple requiring only a limited amount of soldering to connect the 

propulsion system into the power distribution board, but more attention was required 

to ensure a good configuration of the autopilot firmware. 

 

 

 
Figure 3-17: (A) Main propulsion components of the UAS before assembly; (B) The 
completely assembled UAS carrying a dummy payload to simulate the gimbal and 
sensor package weight. 
 
Arducopter v3.2.1 was installed on the autopilot and configured and calibrated to 

match the airframe type and propulsion system and to give effective control of the 

sensor package gimbal. Attention was given to the failsafe features of the firmware 

to ensure that the aircraft would automatically return to its take-off position should 

manual control be lost between the RC transmitter and receiver, and a geofence 

A 

B 
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configured so that it would return if it exceeded the maximum distance limits from 

the pilot in either horizontal (500 m) or vertical (122 m) directions as stipulated by 

the CAA in The Air Navigation Order 2016. The aircraft was also configured to land 

at its current location in the event of a lost or corrupted GPS navigation signal (a 

GPS glitch) or return to its launch point if the battery capacity remaining was below 

30%. 

 
The aircraft in its complete form, with sensor package and batteries had an AUW of 

~6.4 kg. eCalc estimated that that would give a thrust to weight ratio of 2:1, a 

maximum speed of ~9.5 m/s and endurance of ~13 minutes with 30% of the battery 

capacity remaining. Some capacity must be left in the battery to allow for 

changeable weather conditions resulting in a higher load on the battery and to avoid 

deep discharge of the battery, as Lipo batteries are very sensitive to this (Quan, 

2017; Baronti et al., 2011) and could be damaged if discharged too far. 

 

3.4.7 New aircraft – Flight testing and limitations 
Initial flight testing was carried out to ensure that the aircraft was performing as 

expected with regards to its endurance and navigation abilities when flying 

autonomously, and to identify how well the aircraft could be controlled manually as 

the default configuration of the autopilots PID controllers were very relaxed, 

meaning that the aircraft was sluggish in its response to controls. The PIDs of each 

axis were tuned automatically via the use of a special flight mode that tests each of 

the axes in turn (Ardupilot, 2016b). This tuning made the aircraft much more 

responsive, especially when yawing, meaning that it would be an effective platform 

for conducting aerial survey work. 

 
Endurance tests gave results close to those estimated by eCalc (around 13 

minutes), which gives an estimated range of ~4 km if travelling at a speed of 5 m/s 

(the default waypoint navigation speed used for arducopter). Speed tests revealed 

that the aircraft could reach and maintain the expected 9.5 m/s in forward flight and 

that the aircraft could be pushed beyond this and reach speeds up to 17 m/s. 

However, this would result in a loss of altitude as the aircraft was unable to maintain 

the high forward speed as well as altitude, but it does indicate that the aircraft 

should be able counteract occasional gusts of unexpected high wind speeds as long 

as they only occur for a few seconds at a time. 
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Limitations to the operation of the aircraft in relation to wind speed at ground level 

can be estimated using power law (Eq. 3-2), with a default power law exponent of 

1/7. This gives an indication of the likely vertical wind shear (increase in wind speed 

at different altitudes) but is difficult to know exactly as it will vary depending on 

aspects such as atmospheric stability, surface roughness, changes in surface 

conditions and terrain shape (Manwell et al., 2009). With this in mind, constant wind 

speeds in excess of 5 m/s measured at ground level are likely to cause navigation 

issues (reduced speed or deviation from expected flight lines) and are therefore a 

limiting factor when operating the aircraft. 

 

𝑈(𝑧)

𝑈(𝑧𝑟)
= (

𝑧

𝑧𝑟
)

𝛼
  

 

(3-2) 

Where 𝑈(𝑧) is the wind speed at height 𝑧, 𝑈(𝑧𝑟) is the reference wind speed at 

height 𝑧𝑟, and 𝛼 is the power law exponent (Manwell et al., 2009). 
 
The other main operational limitations of the UAS are also environmental, in that 

precipitation of any kind would stop flights as the aircraft and sensors are not 

waterproof (extremely light drizzle might still allow flights to occur). Temperature is 

also a factor, so limitations of a maximum of 35°C were imposed as this could lead 

to the motors overheating when running at maximum. Likewise, a limit of -5°C was 

also imposed, primarily because the capacity of Lipo batteries will reduce in low 

temperatures (Quan, 2017), however this can be remedied by using battery 

warmers. The full limitations to the operation of the UAS (figure 3-18) can be seen in 

table 3-2. 

 

 

Table 3-2: Limitations of the UAS when 
equipped with its sensor package (AUW 
of 6.4 kg). 
 

Feature Limitation 
Max flight time 13 minutes 

Max range at 5 m/s 4 km 
Max speed 9.5 m/s 

Max constant wind 
speed 

5 m/s 

Max gusting wind 
speed 

7.7 m/s 

Max temperature 35 °C 
Min temperature -5 °C 

 

Figure 3-18: The completed UAS with 
sensor package attached and connected 
to the autopilot. 
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3.5 Integration of sensor package with command and control 
system 

In order to be able to use the sensor package effectively as part of a UAS, it needs 

to be integrated with the command and control system of the aircraft so that it can 

be triggered on demand via the autopilot as part of an autonomous mission, or 

manually by the pilot. Autonomous missions themselves will also be limited by the 

integration time and speed of response of the sensor package, as more time 

required to capture and store an image could be a limiting factor on the speed of the 

aircraft depending on the amount of image overlap required. 

 

3.5.1 Triggering 
As the remote triggering feature of the sensor package required a 5 V pulse to the 

USB port of each camera, a custom cable was constructed that would convert a 3.3 

V relay signal from the Pixhawk autopilot into a 5 V signal that could be fed to both 

cameras at the same time, allowing for synchronous image capture. A channel was 

also configured on the RC transmitter to allow the pilot to command synchronous 

image capture when desired. 

 

3.5.2 Managing camera exposure 
Initial testing of the automatic settings within the camera revealed that even 

modestly overcast environmental conditions would result in the cameras increasing 

their ISO to levels that returned very noisy images (e.g. an ISO of 800 or more) and 

shutter speed would be reduced to levels that would often result in blurred images 

due to the speed that the aircraft was traveling at. This is due to the camera’s 

compact lens design and small sensor size, as one downside of cameras of this 

type is their ability to capture good quality imagery in lower light conditions. This is 

because the pixel size on smaller sensors is also smaller and therefore, they require 

either a higher ISO (signal gain) or lower shutter speeds in order to get a good 

exposure (Nakamura, 2006).  

 

3.5.2.1 KAP UAV Exposure Control Script configuration 
The default installation of CHDK allows the user to setup a host of set parameters 

(ISO, shutter speed etc.) as well as allowing the cameras to be triggered remotely. 

However, as changes in light conditions could occur during a survey, being able to 

vary those parameters to suit the conditions without creating overly noisy or blurry 

images was required. 
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The open source KAP UAV Exposure Control Script (v3.1; CHDK, 2016) allows 

configuration of the camera shutter speed and ISO settings within specific bounds 

and by default it is configured towards ensuring that the shutter speed stays high 

enough (e.g. 1/1000 of a second) to minimise image blur. This ‘ideal’ shutter speed 

can be configured within a range (minimum, ideal and maximum) so that it will alter 

if it cannot reach the ideal for a good enough exposure but will not exceed the 

range.  The ISO can also be varied in the same way to ensure a good exposure, 

with lowest ISO value within the range used where possible. The aperture can also 

be configured, however the aperture of the cameras in the sensors package was 

fixed and so could not be altered. 

 
The script was installed onto each camera and configured to use the ranges below 

for shutter speed, ISO and aperture: 

 

 Shutter speed range set to 1/200 – 1/2000 with ‘ideal’ set at 1/640 second. 

 ISO range set to 80 – 400 (using higher than 400 ISO produced very poor 

images). 

 The aperture is fixed at 2.8 (no way to change this as the camera has a fixed 

aperture). 

 
The script can also be configured to run either as an intervalometer (e.g. take an 

image every 2 seconds) or to take a picture on command via a 5 V pulse to each 

cameras USB port. The latter was selected as it gives much more control of the 

number and location of images taken within a survey and allows images to be 

captured manually by the pilot when desired. The script was also configured to force 

the camera to lock its focus to infinity, removing the need for the camera to attempt 

to autofocus for each image. This reduced the time required between successive 

images and reduced the possibility of the autofocus failing to correctly set to infinity, 

which can result in out of focus images. 

 

3.5.3 Sensor integration time and speed of response 
The cameras were then tested for their speed of response when capturing a 

continuous stream of images, as this would be a limiting factor for mission planning. 

The CHDK KAP script was altered to use an intervalometer to trigger the camera 

every two seconds and take a maximum of 12 images. The camera was mounted on 

a tripod to ensure it did not move and was pointed at a computer screen running a 
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digital stopwatch (black screen with white numeric). The light levels in the room 

were reduced to ensure that the camera used the lowest shutter time (1/200) and 

highest ISO (400) permissible by the CHDK KAP script, in order to simulate poor 

environmental conditions and identify the slowest response of the cameras. 

 
The average, maximum and minimum times between successive image captures 

was then identified through interrogation of the images of the digital stopwatch as 

captured by the camera. When capturing JPEG imagery only, the maximum time 

recorded between images was 3.81 seconds. When capturing JPEG and RAW 

imagery, the maximum time between successive images was 5.63 seconds (table 3-

3). 

 
Table 3-3: The minimum, maximum and average time required between successive 
image captures, when capturing JPEG only or JPEG and RAW imagery. 
 

JPEG image capture only (seconds) 
JPEG and RAW image capture 

(seconds) 
Minimum Maximum Average Minimum Maximum Average 

3.03 3.81 3.17 4.93 5.63 5.10 
 

 

3.6 Image collection and mission planning considerations 
As the primary purpose of the UAS was to survey vegetated areas, identification of 

the best way to collect imagery that could then be processed to produce an 

orthorectified image of the entire scene surveyed was required. Orthorectification is 

the geometric correction of an image to a known surface such that its scale is 

uniform allowing measurements of distance to be made. The scale (spatial 

resolution) of the orthorectified image indicates the dimensions of each pixel within 

the image and varies depending on the height above ground level (AGL) at which 

the image was taken, the focal length of the camera and the on-sensor pixel size. 

The term ground sampling distance (GSD) is typically used to indicate the spatial 

resolution of an image and can be identified by eq. 3-3 (Aber et al., 2010). 

 

𝐺𝑆𝐷 = 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ∗  
𝐻𝑔

𝑓
  

 

(3-3) 

Where 𝐻𝑔 is the height above ground level, 𝑓 is the focal length of the camera and 

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 is the on-sensor pixel size of the camera (Aber et al., 2010). 
 
To be able to set the scale of an orthorectified image to units of a known value, 

positional information is required (altitude, longitude and latitude), and this will also 
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allow the georectification of the image to a specified coordinate reference system 

(CRS). Georectification is the transformation of an image from its local coordinate 

system to a given CRS so that it is positioned correctly on a map or other imagery 

using the same CRS. As the UAS is equipped with a GPS receiver and barometer, 

the positional information of the aircraft at the point of image capture can be 

obtained and applied to each image (termed geotagging). 

 
The geotag of each image can be used by photogrammetry software to enable the 

orthorectification of imagery, however the navigation grade GPS used by the UAS is 

only accurate to ±2.5 m (U-blox, 2017), so the resulting positional accuracy will not 

be exact as other studies have indicated (Turner et al., 2014). To improve positional 

accuracy, ground control points (GCP) should be used and surveyed with survey 

grade GNSS that give positional accuracies of (ideally) a few centimetres. These 

can then be used by photogrammetry software to produce a more accurate 

georectification of the imagery, as long as a sufficient number (ideally at least 10) 

have been evenly dispersed across the area to be surveyed (Photoscan, 2018). 

 

3.6.1 Mission planning method and limitations 
Due to the restrictions in maximum altitude AGL for UAS, a single image is unlikely 

to cover the entire area of interest being surveyed at sufficient resolution, therefore a 

collection of images is required that can each be orthorectified before being merged 

together to show a single image of the entire scene surveyed (an orthomosaic). 

Relatively recent developments in computer vision software have made this process 

simpler for images captured by UAS, but they require a high overlap of imagery to 

work effectively, typically 80 % forward overlap and 60 % side overlap (Colomina et 

al., 2014), and so this needs to be planned for when designing autonomous 

missions. 

 
The GCS software Mission Planner (Oborne, 2016) was used to design all of the 

autonomous missions flown within this project, as it provides very customisable 

waypoint navigation. Autonomous missions can be created by first drawing a 

polygon around an area of interest (figure 3-19a) before generating a flight plan 

automatically (figure 3-10b). The flight plan can be configured for a particular 

camera (i.e. on-sensor pixel size, focal length and resolution are known), allowing 

the UAS operator to vary the height of the mission to match the GSD desired. 

Collecting imagery at the correct GSD is important if trying to recognize particular 
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features or objects within the scene, as typically a GSD 3-5 times smaller than the 

object itself is required in order for it to be effectively recognizable (Aber et al., 

2010). 

 

  
Figure 3-19: (A) Selecting the area to survey by drawing a polygon around its 
boundaries; (B) Using mission planner autonomous waypoint generating options to 
produce a flight plan that covers the area of interest. 
 
However, the limitations of the aircraft and sensor package also need to be 

addressed to ensure sufficient overlap of imagery is made. This could mean that if 

flying close to the ground to get highly detailed imagery, the aircraft may have to 

have its default speed slowed down to enable effective overlap due to limitations in 

the image capture speed of the sensors, and this in turn could result in the desired 

flight plan exceeding the endurance of the aircraft. Once all of these factors have 

been addressed, the flight plan (or plans if multiple flights are required to cover the 

area of interest) can then be uploaded onto the aircraft and enabled at any point 

during the flight. 

 

3.7 RAW image pre-processing 
As the cameras were set to capture both JPEG and RAW imagery, after the images 

had been captured the JPEG data could be used directly once it had been 

geotagged with the positional information from the UAS logs. However, the RAW 

imagery needs to be processed to convert into linear 16-bit TIFF files, that can then 

be further processed by photogrammetry software into orthomosaic data.  An 

automatic pre-processing workflow was devised and coded as a macro within 

ImageJ (v1.49k, Fiji distribution; Schindelin et al., 2012) and utilised a number of 

other open source software programs to enable the conversion, correction and 

geotagging of all of the images from a single survey at once (figure 3-20; see 

appendix B for the script itself). 
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Program 
(Process) 

Explanation 

  
  

CHDK PTP 
(bad pixel removal) 

The RAW image is checked to remove any bad pixels. 

  

DCRAW 
(conversion to TIFF) 

The RAW image is converted into a linear 16-bit TIFF 
file. Dark current correction is applied, and the data 

produced is either visual (VIS) using a white balance as  

of the day of capture; or linear (LIN) with white balance 
for all bands set to 1. 

  

ImageJ 
(noise reduction) 

The TIFF file is smoothed (median 3x3 pixel filter) to 
reduce noise caused by high ISO, bad pixels and colour 

artefacts). 
  

PTLens 
(distortion correction) 

The TIFF file is corrected for lens distortion and cropped 
to remove image edges that show signs of vignetting. 

  
ImageJ 

(Sharpen) 
The VIS TIFF data is sharpened to improve visual result. 

  
EXIFTool 

(apply JPEG EXIF 
data) 

The TIFF files EXIF information is updated with the 
geotag and other EXIF information from the 

corresponding JPEG image. 
  

ExifTool 
(apply RAW EXIF 

data) 

The TIFF files EXIF information is updated with EXIF 
from the pre-corrected TIFF file (as this information is 

lost when performing corrections). 
 
Figure 3-20: Image pre-processing workflow. More detailed explanations for each 
process are shown in the following sections. 
 

3.7.1 Bad pixel removal 
Bad pixels are faults on the senor itself where no data will be captured for a 

particular pixel resulting in a black or brightly coloured pixels appearing in the final 

image (figure 3-21a). The JPEG imagery is corrected by the camera itself as no bad 

pixels could be seen (figure 3-21b). CHDK generates RAW files using the Adobe 

DNG v1.3 format, where bad pixels are not corrected on the camera but simply 

marked within the file in order to improve the speed of response of the camera 

(CHDKPTP, 2014). Therefore, CHDKPTP (v3; CHDKPTP, 2014) was used to 

process each RAW file in order to remove any bad pixels (figure 3-21c). 
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Figure 3-21: Example image of a conifer sapling; (A) the converted RAW image 
showing bad pixels (black and coloured speckles across the scene); (B) JPEG 
image with no bad pixel visible; (C) the converted RAW image after processing with 
CHDKPTP to fix the bad pixels (none can be seen). 
 

3.7.2 RAW conversion to TIFF 
The process of converting the RAW imagery into linear 16-bit TIFF files has already 

been covered in chapter 2, however some differences were made to improve the 

final image output and also to produce a separate set of data with improved visual 

clarity, as this would help with manual image analysis. The open source program 

DCRAW (v9.25; Coffin, 2018) was used for all of the conversions, but its command 

inputs would vary depending on the type of imagery to be produced (either linear or 

visual) and the attributes of the image to be converted (ISO and shutter speed used 

for its capture). 

 

3.7.2.1 Dark current signal correction 
The dark current signal of a camera sensor can be generated even if there is no 

light getting to the sensor as it is noise produced by the sensor itself. It changes 

depending on the integration time of the camera (shutter speed), the ISO (signal 

gain) used and the temperature of the sensor (Verhoven et al., 2009; Figure 3-22). 

Dark images (images taken in the absence of any light) can be used to correct some 

of this noise as well as detect and remove hot pixels (very bright pixels), which can 

occur when higher ISO and low shutter speeds are used (Verhoven et al., 2009). 
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Figure 3-22: Example dark current signal noise due to increasing ISO (images have 
had their histograms equalised to enhance the noise). All dark images captured 
using a shutter speed of 1/200 and an ISO of (A) 80; (B) 100; (C) 125; (D) 160; (E) 
200; (F) 250; (G) 320; and (H) 400. 
 
A series of dark images were captured at room temperature (~19 °C) for each 

camera using a range of ISO and shutter speed settings (to match the permissible 

range used within the CHDK KAP script). Unfortunately, the shutter speed of the 

cameras could not be set exactly via the camera’s normal settings menu (unlike the 

ISO) and the CHDK firmware would only allow a coarser range of settings to be 

used, so getting exact dark image to captured image exposures was not possible. 

 
ISO range: 

 80, 100, 125, 160, 200, 250, 320 and 400 

 
Shutter speed range (seconds): 

 1/200 (0.005), 1/250 (0.004), 1/320 (0.003), 1/500 (0.002) and 1/1000 

(0.001) 

 
15 dark images were captured for each ISO and shutter speed combination (600 

images for each camera) and converted using DCRAW into dark frame images.  

The intention was to produce an average dark frame from each set of 15, however 

this averaged dark frame was not acceptable to DCRAW for use as a dark frame 

(despite being in the correct format), so only a single dark frame from each set was 

used for dark current correction. Dark images were selected based on the ISO and 

shutter speed of the image to be corrected. As the entire expected range of shutter 

speeds could not be captured, a dark image with next slowest shutter speed would 

always be used (i.e. an image captured a 1/640 second would use a dark image 

captured at 1/500 second). 

B A C D 
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The use of a single dark frame did considerably reduce the dark current signal 

(figure 3-23) although did not completely remove it, as the only way to ensure 

removal would be to take a dark image directly after intended image capture using 

the same settings (and with the sensor at the same temperature). This could be 

done using CHDK but would have slowed the camera response time considerably 

(essentially doubling it), making the sensor package impractical to deploy on a UAS. 

 

  
Figure 3-23: Enhanced contrast dark images (saturation 0.4 %, equalised 
histogram); (A) dark image that had not been corrected (mean DN 125.573 
±137.705, minimum DN 0, maximum DN 65534); (B) dark image that had been 
corrected by using another dark frame within its set (mean DN 0.022 ±2.728, 
minimum DN 0, maximum DN 3320). 
 

3.7.2.2 Linear conversion 
Conversion to linear 16-bit TIFF utilised the same DCRAW command inputs 

irrespective of whether the images were sourced from the modified or unmodified 

camera. The command input was changed slightly from that used previously in 

chapter 2 to produce linear images, as that used low-quality bilinear interpolation to 

create the TIFF image from the RAW file to allow high speed processing. However, 

artefacts were noticed when this was used (figure 3-24) so a higher quality 

interpolation routine was applied (VNG, Variable Number of Gradients) that 

interpolated the RGB channels as 4 colours in order to remove the artefacts (Coffin, 

2015). 

 
DCRAW command: 

 dcraw -r 1 1 1 1 -f -o 0 -4 -j -t 0 -T -K “darkframe” 
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Figure 3-24: Example of bilinear (A) and VNG (B) interpolation looking at a grey 
calibration target. Coloured artefacts can be seen around the edges of the 
calibration target in (A) but are not present in (B).  
 

3.7.2.3 Visual conversion 
A set imagery with improved visual clarity was required for any direct visual 

(manual) image analysis, as linear conversion of the images with the white balance 

set to 1 for all channels could not be used effectively for this purpose (colour 

representation was poor in relation to the human visual system). Visual conversion 

of the data was not strictly necessary as the JPEG imagery produced would have 

been sufficient for this purpose, however this often suffered from over exposure of 

brighter areas of an image (e.g. very white objects such as white flowers) and was 

quite noisy when using higher ISO settings (figure 3-25a), making visual analysis 

more difficult. One of the advantages of using RAW imagery is that it can be 

recreated to remedy issues such as this, so DCRAW was used to produce improved 

visual clarity TIFF imagery using the white balance as set on the day of image 

capture, with highlight recovery options to improve image quality (figure 3-25b). 

 
DCRAW command: 

 dcraw -w -f -o 1 -H 2 -4 -j -t 0 -T 
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Figure 3-25: Example of a JPEG (A) and TIFF (B) image interpolated from the 
RAW file. More image noise and over exposure of bright objects can be seen in 
(A); Highlight recovery shows far more detail in (B) and less noise, but some 
brighter features get a pinkish tint (e.g. the fluorescent jackets).  
 

3.7.3 Noise reduction 
Noise was still apparent even after bad pixel removal and dark current correction, 

especially when images were taken using higher ISO and lower shutter speeds 

(figure 3-26a). To reduce this effect all of the converted TIFF images were smoothed 

within ImageJ using a 3 x 3 pixel median filter (figure 3-26b). 

 

  
Figure 3-26: Example image from the modified camera showing a grey calibration 
target (ISO 400, 1/500 second shutter speed). Noise is apparent before smoothing 
is applied (A) and is greatly reduced after the use of a 3 x 3 pixel median filter (B). 
 

3.7.4 Distortion correction 
The default size of the JPEG image produced was 4320 x 3240 pixels (~14 mega 

pixels), however the size of the actual RAW image (once converted to TIFF) was 

4336 x 3246 pixels (~14.1 mega pixels). This is because some on camera 

processing is occurring when it is generating the JPEG image, in order to correct 

distortion created by the lens of the camera and to remove the outer edges of the 
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image to reduce vignetting effects (image darkening in a circular gradient from the 

image centre to its borders; Lelong et al., 2008; Lebourgeois et al., 2008).  PTLens 

(v9; Niemann, 2018) was used to perform a fisheye distortion correction with image 

crop to each of the TIFF images to replicate the correction made to the JPEG 

images (figure 3-27). An almost exact replication could be made, however the image 

crop was reduced to maintain a larger image footprint, as this would allow for a 

greater image overlap at the later orthomosaic processing stage, whilst still 

removing the worst areas of vignetting (essentially the far corners of each image). 

 
PTLens settings: 

 Fisheye correction 65, crop factor 6 (to match the JPEG). 

 Fisheye correction 65, crop factor 3 (used to allow a larger image footprint). 

 

   
Figure 3-27: (A) An uncorrected TIFF image (note curve of fence line); (B) a 
corrected and cropped TIFF image; (C) a corrected and cropped TIFF image 
overlaid with its corresponding JPEG image to show extent of extra image footprint.  
 

3.7.5 Sharpening visual data 
To improve the clarity of the visual data it was sharpened within ImageJ using a 

weighted average of the 3 x 3 pixel neighbourhood (figure 3-28). As sharpening can 

accentuate noise it was not applied to the linear imagery, but as the visual data was 

only intended for direct visual analysis (and not part of any automatic classification), 

this was not seen as a potential source of increased error. 

 

 
Figure 3-28: Weighted average filter used by ImageJ 
to sharpen images (Ferreira & Rasband, 2012) 
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3.7.6 Adding EXIF information 
The Exchangeable Image File Format (EXIF) information is standardised metadata 

attached to each image file so that information such as date of capture, ISO, shutter 

speed etc. can all be recorded. As the RAW files are processed though the various 

stages of the processing workflow, some of the original EXIF information is lost, so 

the open source program EXIFTool (v10.05; Harvey, 2018) was used to replace the 

lost information and to copy the geotag information from the JPEG images onto the 

processed TIFF files. 

 

3.8 Orthomosaic generation workflow 
Once the RAW images have converted into TIFF files, corrected and geotagged, 

they are then ready to be processed into an orthomosaic to show a uniformly scaled 

image of the entire scene surveyed. Software that uses computer vision to process 

digital images have become very popular for processing imagery from UAS as more 

traditional aerial photogrammetry techniques can struggle to process the high-

resolution imagery from low altitude surveys causing large perspective distortions 

(Turner et al., 2012).  

 
Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia) was chosen as the 

photogrammetric software to use for this project, as it has been used successfully in 

many studies, including investigating the spectral and structural changes in 

agricultural crops (Bendig et al., 2015), estimating tree canopy heights (Jensen & 

Mathews, 2016), identifying changes to landslides over time (Lucieer et al., 2013) 

and monitoring the spread of invasive plant species (Müllerová et al., 2016). It uses 

several different computer vision algorithms over different stages (figure 3-29), with 

the first stage being image alignment. 
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Figure 3-29: Agisoft Photoscan image processing workflow.  
 
Image alignment uses a technique called structure from motion (SfM; Ullman, 1979), 

along with other algorithms similar to scale-invariant feature transform (SIFT; Lowe, 

1999) which detects feature points within each image (distinctive features such as 

object edges), matches them to similar points in other images and monitors their 

change in position in successive images. If available, camera location information 

(from the geotag of an image) will be used to accelerate the matching process 

(collocated images can be checked more quickly). This allows a three dimensional 

(3D) sparse point cloud of the matched feature points to be created (figure 3-30a), 

as well as give an understanding to the camera position and orientation at the 

moment of image capture and internal calibration parameters to account for lens 

distortions (Verhoeven, 2011). GCPs can also be used (once their position in each 

image is marked), allowing the alignment to be further optimised to improve the 

accuracy of the sparse point cloud geometry. 

 

  
Figure 3-30: (A) An example sparse point cloud of a trial crop of potatoes; (B) an 
example dense point cloud of the same scene, showing far more detail and 3D 
geometry. 
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The second step uses a dense multi-view stereo algorithm to bundle adjust the 

images (adjusting all of the images based on their estimated positions and 

calibration) to produce the scene geometry in detail (using pixel values rather than 

matched feature points), generating dense 3D point cloud (Verhoeven et al., 2012; 

figure 3-30b). The third step uses this dense 3D point cloud to create a digital 

surface model (DSM), essentially a two-dimensional (2D) image whose pixels 

represent elevation values (figure 3-31a). Finally, an orthomosaic can be generated 

(figure 3-31b) by orthorectifying all of the bundle adjusted images, using the DSM as 

a height field. The DSM and orthomosaic can then be exported for further analysis 

(as 32-bit and 16-bit TIFF files respectively) using any given CRS. 

 

  
Figure 3-31: (A) A digital surface model showing the elevation profiles over a trial 
crop of potatoes; (B) an orthomosaic of the same scene, formed from approximately 
30 images that had been orthorectified using the DSM. 
 
As two cameras were being used in this project and visual as well as linear data was 

required, the workflow in figure 3-29 had to be run three times for each survey 

completed. This was not ideal as processing could take several hours per dataset 

(on an Intel i7 6 core computer with 64 GB RAM and twin AMD R400 graphics 

cards), depending on the reconstruction parameters specified and number of 

images involved. Once processing was complete, three sets of orthorectified data 

would be available for further analysis; a visual orthomosaic generated from the 

unmodified RGB camera; a linear orthomosaic and DSM created from the 

unmodified RGB camera; and a linear orthomosaic created from the modified NIR 

camera (figure 3-32). 
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Figure 3-32: Overview of project image processing workflow, from pre-
processing to orthomosaic and DSM generation, resulting in a 6 band 
orthomosaic (containing all bands from the modified and unmodified cameras), 
a digital surface model and an improved visual clarity orthomosaic. 

 

3.9 Digital surface model quality investigation 
The purpose of this study was to investigate the qualities of the DSM data produced 

from Photoscan using example imagery processed following the processing 

methodology indicated in section 3.8. Other studies have already shown that 

Photoscan can be effective in producing accurate scene geometry (Kršák et al., 

2016; Gross, 2015), so the data was processed using different dense cloud 

generation options and filtering in order to identify which options could be the most 

suitable to use for future studies within this PhD project. 

 

3.9.1 Methodology 
The trial site used was located at Fingask farm (Oldmeldrum, Scotland), with the 

subject being a SRUC trial of different potato (Solanum tuberosum) varieties and 

treatments (figure 3-33).  The survey was conducted on 7th August 2015 at around 

midday under mixed sunny/cloudy conditions with light winds (< 2 m/s). The Vulcan 

UAS was flown at an altitude of 70m AGL to give an expected GSD of ~2 cm per 
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pixel, using a standard lawn mower survey pattern to give a forward image overlap 

of 78% and side overlap of 60 %. The speed of the UAS was limited to 3 m/s to 

allow for the integration time of the sensors, with 79 images captured in total. 12 

GCP (orange discs of 20 and 30 cm diameter) were placed in and around the trial 

area and measured with a Leica GPS 1200 survey grade RTK GPS (Leica 

Geosystems, Heerbrugg, Switzerland) with an expected accuracy of ±2 cm (Leica, 

2008).  All of the images produced were geotagged within mission planner using the 

UAVs on-board 3DR GPS (Ublox LEA-6H), with expected accuracies within ±2.5 m 

(U-blox, 2017). 

 

 
Figure 3-33: Orthomosaic of the entire trial site (~2 ha) showing all plots. 
 

3.9.1.1 Data processing 
The data was processed for visual analysis but was not sharpened, thereby 

simulating the expected DSM data output, but with better visualisation. This data 

was then processed using different parameters within Photoscan (v1.2.0; table 3-4), 

including alterations to the quality of the dense point cloud and its depth filtering. All 

of the GCPs were marked in each image where visible and optimized within 

Photoscan with a measurement accuracy 0.15 m to allow for possible errors in 

identification of the GCP centres, as the GCP themselves did not have obvious 

markings of their centre points (the geotag of each image was not used as part of 

the optimisation, only for initial image alignment).   

 
  



81 
 

Table 3-4: Photoscan image processing options used for each dataset, 
with GSD of DSM created. 

Data 
set 

Image 
Alignment 

Dense 
cloud 

Depth 
filtering 

DSM GSD 
(cm) 

1 Highest Ultra Aggressive 1.88 
2 Highest Ultra Mild 1.82 
3 Highest High Mild 3.77 
4 Highest Medium Mild 7.54 

 

 

3.9.1.2 Data analysis 
All of the data was then analysed within ArcGIS (v10; ESRI, Redlands, USA). The 

box used to transport the UAS (figure 3-34a) was measured (118.5 x 45 x 56.5 cm; 

0.301 m3). Obvious ground points around the box were marked and used to create a 

digital terrain model (DTM) of the ground surface (figure 3-34b) and used to 

generate a height model for the box (for each dataset). The top of the box was then 

also marked to enable the volume to be identified for each set of data. 100 randomly 

generated points (at least 2 cm apart from each other) where then created within the 

boundary of the top of the box (figure 3-34c), before being queried to identify the 

height at each point for each set of data (which in an ideal world should all have 

matched the actual height of the box). 

 

   
Figure 3-34: (A) The UAS transport box; (B) ground points (red stars) around the 
box used to generate a DTM; (C) the outline of the box used to measure its volume 
and within it, the random points (green dots) used to measure its height. 
 

3.9.2 Results 
The box volumes reported varied between datasets, with datasets 2 & 3 showing a 

slight increase of 2~4 % of expected volume, but datasets 1 & 4 showing a 

decrease of 12~17 % of expected volume (table 3-5). The box heights also varied, 

with dataset 1 & 4 under reporting the mean height and sets 2 & 3 slightly over 

reporting it. Set 1 also showed a larger standard deviation of the mean, with points 
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above and below the expected height value. Sets 2 & 3 showed less standard 

deviation of the mean and less outlying data, with set 4 being the most consistent 

and showing the smallest deviation (figure 3-35). 

 
Table 3-5: Reported volumes from each dataset and the 
difference in volume compared to the actual volume of the box 
(0.301 m3). 
 

Data set Volume reported (m3) Difference in volume 
1 0.265 -12.11 % 
2 0.306 1.65 % 
3 0.312 3.62 % 
4 0.250 -16.99 % 

 

 

 
Figure 3-35: Box plot of 100 points of height measurements (mean, median, 
standard deviation and outliers shown for each dataset). The black dotted line 
denotes the true height of the box. 

 

3.9.3 Discussion and conclusion 
The results were as expected in relation to the higher quality dense cloud datasets 

giving the closest estimation to the actual volume of the box, as at Ultra quality, the 

dense cloud is created using the images at their full resolution, whereas this is 

downscaled for each lowering of quality (High is 50 %, medium is 25 %). This 

means that the GSD becomes larger for each reduction in quality, resulting in the 

shape of the box not being well formed at all in dataset 4 (medium quality; figure 3-

36d). However, the aggressive filtering in dataset 1 did not represent the true 

dimensions of box well at all (figure 3-36a), so this would not be a good option if 

trying to identify volumes of relatively small objects within a scene. Holman et al., 

(2016) also reported that more accurate height estimations were made when using 
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mild depth filtering for their analysis of wheat plots, indicating that for smaller 

features this would be the better option. 

 

  

  
Figure 3-36: Height models for each dataset (white is ground level, dark red are 
highest points, black rectangle represent location of the box); (A) the height model 
for dataset 1, where the geometry of the box is poorly formed; (B) the height model 
for dataset 2, showing well-formed box geometry; (C) the height model for dataset 3, 
showing that the edges of the box are not as clearly defined; (D) the height model 
for dataset 4, showing very poorly defined box edges due to low GSD. 
 
The difference in the results for volume estimation and height were very similar for 

datasets 2 & 3 (figure 3-36b & 3-36c), with the coarser dataset 3 showing slightly 

less variation in its indications of the height of the box. The main difference between 

these two datasets was the amount of time required to process the data within 

Photoscan. Processing using Ultra quality took ~50 minutes (for the dense cloud 

step), whereas when only using High quality, this took ~10 minutes. This difference 

in processing times could become more of an issue if the dataset includes a large 
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number of images, especially if computer processing power was limited. Ideally the 

Ultra quality setting would always be used, however if the GSD of the generated 

DSM processed using High quality settings was enough for the intended task, then 

processing time savings could be made. 

 
Therefore, as the image processing methodology identified for this project requires 

the creation of three sets of data for each survey, limiting dense point cloud quality 

to allow faster processing times makes sense as long as the GSD of the DSM will 

be sufficient for the analysis task at hand, as the orthomosaic will always be created 

at the GSD of the original images. 

 

3.10 Orthomosaic normalisation methodology 
As light intensity changes throughout a day and between different days, 

normalisation for image brightness is required to allow comparisons between 

different surveys. Scaling each of the colour channels for each camera 

independently to a uniform reflectance level allows normalisation of changes in 

brightness between different surveys. A panel or target that has a flat reflectance 

spectrum across all of the wavelengths being captured is required and ideally it 

should be a Lambertian surface (Troscianko & Stevens, 2015) and at least ten times 

larger than the GSD of the image (Wang et al., 2015). 

 

3.10.1 Calibration target reflectance identification 
A camera exposure and calibration kit, consisting of grey, white and black cards 

constructed of a matt textured plasticised material (20 x 25 cm in size) was selected 

to be used as the calibration target. It was tested with assistance from NERC FSF 

under laboratory conditions (figure 3-37) using an SVC LC-RP Pro contact probe 

(Spectra Vista Corporation, NY, USA) attached to an SVC HR-1024i field 

spectrometer (Spectra Vista Corporation, NY, USA). 
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Figure 3-37: The SVC contact probe and spectrometer in use 
measuring a grey card target. 

 
The reflectance properties of the cards were measured over the visible to short 

wave infrared range (350-2500 nm) at a sampling interval of 1.5 nm (350-100 nm), 

3.8 nm (1000-1890 nm) and 2.5 nm (1890-2500 nm), to produce reflectance spectra 

for each card (figure 3-38). None of the cards showed a truly flat profile, however the 

grey card only varied from approximately 16 - 20 % between the area of interest 

within the visual to NIR range (420-860 nm), and reflectance values in this range (up 

to 50%) are less likely to cause the cameras to over expose when capturing the 

calibration target (Troscianko & Stevens, 2015). 

 

 
Figure 3-38: Reflectance spectra of the white, grey and black calibration cards. 
 
The reflectance of the grey card was identified for both the modified and unmodified 

cameras by identifying the average reflectance across the full width at half maximum 

(FWHM) spectral response for each individual band (table 3-6). 
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Table 3-6: Peak wavelength, FWHM range and average grey card reflectance 
values for each band of each sensor. * The green channel of the modified camera 
was not processed as the band is to be discarded due to it not having a distinct peak 
wavelength. 
 

Sensor Band 
Peak wavelength 

(nm) 
FWHM 
(nm) 

Average grey card 
reflectance (%) 

 Blue 450 420-490 16.81 
Unmodified Green 520 470-590 17.56 

 Red 600 580-650 18.46 

 Blue 810 790-860 20.76 
Modified Green*    

 Red 620 600-710 18.88 
 

 

3.10.2 Image normalisation methodology 
To normalise the output of each camera, for each survey undertaken the calibration 

targets were placed flat on the ground near the take-off position with a clear view of 

the sky and not overshadowed by any nearby vegetation. An image of the 

calibration targets was then made at the beginning of each autonomous mission, 

from directly above the targets at an altitude of ~5 m (figure 3-39a). This essentially 

served two purposes, to enable the normalisation itself plus a check to ensure that 

each camera lens had deployed and locked autofocus to infinity. The average DN of 

the grey calibration target for each band were then captured after the mission using 

ImageJ (v1.49k, Fiji distribution; Schindelin et al., 2012), with the region of interest 

being measured being well within the target to avoid any shading effects from the 

edges (figure 3-39b). 

 

  
Figure 3-39: (A) Example RGB image showing typical positioning of the calibration 
targets (centre of image) and altitude used to capture normalisation image; (B) 
Example measuring of grey calibration target using ImageJ, yellow polygon is the 
area being measured (1698 pixels). 
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To normalise the DN (linear pixel values) of each image, the equation outlined by 

Troscianko & Stevens (2015) was used (eq. 3-4) and applied to each band of both 

cameras. As this normalisation will convert the linear 16-bit TIFF images into 32-bit 

TIFF images, the storage space requirements and processing time required to 

convert each image individually were deemed excessive. Therefore, the 

normalisation process was only applied to the completed orthomosaic using ArcGIS 

(ESRI, Redlands, USA), by first separating each linear 16-bit orthomosaic into its 

individual bands, before applying the normalisation equation and then recomposing 

the bands back together into a 32-bit orthomosaic. 

 

𝑉𝑛𝑜𝑟𝑚 = 𝑉𝑙𝑖𝑛𝑒𝑎𝑟  
(

𝑆

100
)65,535

𝐺
  
 

(3-4) 

Where 𝑉𝑛𝑜𝑟𝑚 are the normalised pixel values, 𝑉𝑙𝑖𝑛𝑒𝑎𝑟 are the linear pixel values, 𝑆 
is the grey standard reflectance value and 𝐺 is the mean pixel values of the grey 
calibration target (Troscianko & Stevens, 2015). 
 

3.11 Piksi RTK GPS accuracy assessment 
The Piksi RTK GPS (v 2.3.1) unit is an open source centimetre-accurate relative 

positioning carrier phase RTK device that can output at position at 10 hz (Swift 

Navigation, 2016). Unfortunately, it could not be used on the UAS during this project 

as it required modified firmware to be able to integrate with the 3DR Pixhawk 

autopilot, and in order to get accurate positioning of each image taken by the UAS, it 

would require feedback from the cameras when their shutters actuate (e.g. by use of 

the flash hot shoe). This was not possible for the cameras used to create the sensor 

package (they did not have a flash hot shoe) so the Piksi was instead converted to 

be used on the ground, to enable surveying of GCPs to a high level of accuracy. 

 

3.11.1 Methodology 
As this is an RTK device, it requires a non-moving base station to provide reference 

measurements to the moving rover unit that is actually taking measurements, with 

communication between the two units provided via 3DR 433 Mhz radios (v2; 3D 

Robotics, Berkeley, USA). The base unit was attached to a tripod (figure 3-40a) and 

the roving unit attached to a collapsible pole (figure 3-40b). Both the rover and base 

units were attached (via USB) to Panasonic Toughbook CFU1 field computers 

(Panasonic, Tokyo, Japan) running the Piksi console software (v0.26, firmware 
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version 0.16). The roving Piksi unit was configured to output NMEA messages at 2 

hz with a Baud rate of 4800 and the freeware software GPSUtility (v5.26; Murphy, 

2016) was installed onto its field computer so that it could be used to capture the 

NMEA data being output from the roving Piksi unit. 

 

  
Figure 3-40: The configuration of the Piksi base station (A); The configuration of the 
Piksi roving unit (B). 
 
To test the accuracy of the Piksi units, 30 GCPs were deployed within a ~1 ha area 

of a field to the West of Edinburgh. With assistance from the NERC Geophysical 

Equipment Facility (Allan Hobbs & Kyle Caparoso) and an SRUC intern (Callum 

Tyler, Queensland University of Technology), the GCP points were measured using 

a Leica VIVA GS10 RTK GNSS (Leica Geosystems AG, Heerbrugg, Switzerland) 

with an expected accuracy of ±8 mm horizontal and ±15 mm vertical (Leica, 2018). 

The points were then re-measured using the Piksi roving unit (the base station was 

positioned on a pre-surveyed point of known location) and the difference between 

the two compared to identify the accuracy of the Piksi. 

 

3.11.2 Results 
One of the GCP was missed (the point could not be located) so was omitted from 

the test. The remaining 29 were compared to identify the maximum horizontal (X 

and Y) and vertical (Z) difference between the two measures and root mean square 

error (RMSE). RMSE takes the difference between the observed value and 

estimated value for each user-defined point, squares it, finds the mean squared 

value, and then finds the square root of that mean (Roze et al., 2014). The 

horizontal difference (RMSE XY) was worse than expected at nearly 8 cm, with a 

A 

B 
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maximum difference in Y of 13 cm for one measurement. However, vertical 

measurements (RMSE Z) gave a good comparative result at ~3 cm (table 3-7). 

 

Table 3-7: Accuracy results (RMSE) of the Piksi RTK GPS unit. 
 

 
X (m) Y (m) Z (m) 

Mean difference 0.023 ±0.026 0.042 ±0.053 -0.019 ±0.021 

Maximum difference 0.072 0.131 0.059 

RMSE 0.035 0.067 0.029 

RMSE XY 0.076 
   

 

3.11.3 Conclusions 
It was not expected that the accuracy of the Piksi units would be to the cm level, 

however the larger than expected maximum difference noticed for RMSE Y was 

surprising, especially as errors of 10 cm or more occurred at least 5 times, whilst 

much smaller errors were noted for RMSE X. The reason for this is unclear but it 

could be due to the way the Piksi rover was being operated, as even though a spirit 

bubble had been added to ensure the survey pole was level for each measurement, 

slight movements of the operator as they request a measurement were likely to 

affect the results. The RMSE Z was better than expected as vertical accuracy is 

typically worse than horizonal accuracy, which again highlights the likelihood that 

the operator or the construction of the survey pole (or both) were contributing to the 

RMSE XY error. However, the error is still considerably smaller than that of the 

navigation grade GPS used on the UAS, which is only accurate to ±2.5 m (U-blox, 

2017) and therefore higher positional accuracy could be gained by using the Piksi to 

survey GCP for use in optimising imagery when being processed by Agisoft 

Photoscan.  

 

3.12 Concluding remarks 
This chapter has outlined the development of the main components of a UAS (the 

airframe, its propulsion system, command and control and sensor package), 

identified its operational limitations and modus operandi for field deployments, and 

indicated the methods to be used to process the imagery captured into products that 

can be used for further analysis. The UAS is ideally suited to conduct field scale 

research (i.e. areas < 10 ha) as ~10 ha can be covered within a single flight at 

maximum altitude, giving image with a GSD of ~3.5 cm per pixel using the combined 

sensor package. However, as multiple battery sets can be used, this UAS could be 
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used to capture up to 40 ha a day, if all four battery sets were utilised (potentially 

more if field capable battery recharging options were available). 

 

It does however have limitations with its design that preclude its use for certain 

environmental conditions as it is not waterproof, and its large physical size restricts 

its use somewhat to areas that are more easily accessible (a smaller system would 

be much easier to pack into a rucksack). Due to the requirements to use RAW 

imagery from a camera that was not really designed to capture RAW imagery, 

image capture is slow and pre-processing to a product fit for analysis is long winded, 

however it should perform well and be comparable with other studies that have used 

similar sensor packages (von Bueren et al., 2015; Koh & Wich, 2012; Jensen & 

Mathews, 2016; Rasmussen et al., 2016).  

 
The ability of the sensor package to show visual, near infra-red and height 

information at very high resolutions should enable it to have a wide range of utility 

for both agricultural and environmental research areas of interest to SRUC (e.g. 

plant growth parameters, terrain slope analysis and identification of varied 

microtopographical features). Therefore, this chapter has met the 1st and 2nd 

objectives of this PhD project as the field scale level of endurance of the UAS is 

ideal for the majority of SRUC’s agricultural research work, which is typically 

concentrated on smaller scale crop trials of around 10 ha or less. Similarly, 

environmental research is also likely to only be concerned with field scale areas, 

although surveying longer linear features such as rivers or in out of the way places 

may prove more of a challenge as the size of the aircraft would make it difficult to 

transport to preferred areas of operation. The 3rd objective is only partially met, as 

this chapter only indicates the software and processing routines to enable the 

imagery captured to be created into products for further analysis (e.g. orthomosaic 

and corresponding digital elevation model). Further software and data processing 

requirements need to be identified to enable the classification of features of interest 

from within these data, that are important for specific use cases. 

  



91 
 

Chapter 4. Agricultural applications - Disease 
detection within a trial crop of potatoes 

4.1 Introduction 
Agriculture around the world has to deal with the ever increasing need to improve 

yield in order to supply a growing human population (Motavalli et al., 2013), whilst 

reducing impacts on the environment and reacting to climatic changes that could 

bring pests and disease to new areas (Abberton, 2016). Precision agriculture is a 

key management approach that could assist with these challenges (McLoud et al., 

2007), with UAS forming part of the management solution by providing remotely 

sensed data that could be used to help identify fertilizer requirements or detect 

disease and pest infestation. Being able to detect the onset of disease within an 

agricultural crop would allow for fine tuned decision making with regards to when 

and where to apply products (e.g. fungicides, pesticides), potentially reducing the 

amount of product applied, which would be of benefit to the farmer by reducing their 

costs and would result in less impact to the wider environment (Zhang & Kovacs, 

2012). 

 
UAS have already been used to successfully monitor crops such as wheat (Torres-

Sánchez et al., 2014) and barley (Bendig et al., 2015) and detect the onset of 

disease in crops such as rice (Zhang et al., 2017), soybean (Brodbeck et al., 2017) 

and potatoes (Nebiker et al., 2016; Sugiura et al., 2016). However, to date no 

studies using UAS have looked at the particular potato disease commonly named 

blackleg (Pectobacterium spp.), which is a major contributor to the loss of potato 

crops worldwide (Toth et al. 2011). 

 
This chapter addresses the 3rd and 4th objectives of this PhD project and explores 

the use of an UAS to detect the onset of disease within a trial crop of potatoes and 

is based on the results of an experiment carried out with colleagues from The James 

Hutton Institute (Sonia Humphirs and Ian Toth).  A paper detailing early results of 

the visual and automatic analysis (Gibson-Poole et al., 2017) was submitted and 

presented at the European Conference on Precision Agriculture in Edinburgh, UK 

(July 2017) and can be seen in appendix C. The rest of this chapter is an expansion 

of those early results and seeks to identify if the onset of disease can be 

automatically classified based on the structural qualities of the plants (i.e. their 

growth rate, height, volume and canopy cover). 
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4.2 The potato 
The potato (Solanum tuberosum L.) 

was first grown as a crop in the south 

Americas (Andean region) 8000 years 

ago (Ortiz & Mares, 2017) and was 

not brought to Europe until the 16th 

century (Hawkes & Francisco-Ortega, 

1993). Its introduction in Europe led to 

a significant increase in the European 

population, however over reliance on 

the crop and a lack of genetic diversity 

lead to the rise of disease (late blight) 

which spread to Europe in the 1840s 

causing the great famine in Ireland 

from 1845-49 (Ortiz & Mares, 2017). 

The potato plant is a herbaceous 

perennial (figure 4-1) that is typically 

used as an annual crop in agriculture, 

where it is grown from seed tubers of 

particular varieties (Struik, 2007). 
 

Figure 4-1: The above and below ground 
elements of a potato plant (International 
Potato Centre, 2018). 

 
The plant itself can be grown from true potato seed, although this is typically only 

done by plant breeders in order to create new varieties (Bradshaw, 2007). All parts 

of the plant contain the compound glycoalkaloid solanine, which contributes to the 

flavour of the tubers but can be bitter and toxic to humans at high concentrations 

(Cantwell, 1996). The potato is now an integral part of the worlds food supply, being 

the world’s fourth largest food crop after wheat, maize and rice (Ahmadi et al., 2014, 

Lacomme et al., 2017), with over 4000 cultivars being grown in more than 100 

countries (Bradshaw, 2007). 

4.2.1 Growth stages 
The potato plant goes through a number of growth stages before it dies back 

(senescence) at the end of the growing season (figure 4-2), with the BBCH 

(Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) scale 

indicating 10 distinct stages (Kolbe & Stephan-Beckmann, 1997). Understanding 

these growth stages are important in predicting when tubers will start to form (tuber 



93 
 

initiation; O'Brien et al., 1998) and are therefore key in informing when specific 

treatments should be applied (e.g. fertilizer; Kolbe & Stephan-Beckmann, 1997) and 

when the crop could be harvested to supply tubers at a specific size or for a 

maximum yield (O'Brien et al., 1998). 

 

 
Figure 4-2: The phenological growth stages of the potato crop, with 2-digit decimal 
identification code for each stage (Kolbe & Stephan-Beckmann, 1997). Diagram 
does not show stage 2, the formation of basal side shoots, or stage 3, main stem 
elongation (Hack et al., 2001). 
 

4.3 Seed and ware potatoes 
There are two main crop types of potatoes grown for two specific markets. Ware 

crops are grown for direct consumption or processing into other products for 

consumption (e.g. bagged crisps) and form the largest volume of UK potato 

production (AHDB, 2016). Seed crops are not for direct consumption but rather to 

supply seed tubers of known varieties for the next seasons ware crops. In 2014 the 

UK was ranked as the 19th largest producer of potatoes in the world (AHDB, 2016), 

with yield still increasing (figure 4-3) despite the area being used to grow potatoes 

(and therefore total production) reducing (AHDB, 2016).  
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Figure 4-3: Yield per ha and total production from 1960-2016 in 
the UK (AHDB, 2016). 

 
A large proportion of UK grown potatoes are exported, especially the seed crop, with 

Egypt purchasing 58 % of all UK seed potato exports 2016/17 (Wright, 2017). 

Scotland produced 23% of all of the potatoes grown in the UK in 2016 (figure 4-4a), 

with seed production accounting for 47 % of all the potato crops grown in Scotland 

(AHDB, 2016; figure 4-4b). 

 

 
 

Figure 4-4: (A) Proportion of planted area in the UK by region in 2016 (AHDB, 
2016); (B) 2016 main production areas in the UK for ware and seed potatoes 
(AHDB, 2016).  
 
  

A B 
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4.4 Scottish seed potato classification scheme  
Scotland is recognised within the EU as a producer of high greed seed potatoes, but 

before seed potatoes can be marketed, they must meet the requirements of The 

Seed Potatoes (Scotland) Regulations 2015. To ensure this, the Scottish 

Government employs inspectors to verify that seed crops are healthy (free or within 

tolerance levels for specific disease or viruses) and of sufficient purity (i.e. they are 

the variety they are supposed to be), enabling them to be certified under the Seed 

Potato Classification Scheme (SPCS; SASA, 2017). 

 
Potatoes can be affected by a number of viruses and bacterial infections that can 

transfer to daughter tubers (the progeny), therefore seed potatoes are initially 

created from nuclear stock (micro plants propagated under protected conditions) 

which generate mini tubers. These pre-basic (PB) tubers must be 99.99 % pure, true 

to type (i.e. no variations of variety) and completely free from specific viruses and 

disease, including blackleg and over a number of field generations (growing cycles), 

their progeny becomes the initial seed potato stocks (termed BASIC S; SASA, 

2017). 

 
BASIC S seed tubers can then be propagated for up to 5 field generations and can 

be marketed if they are within tolerances for certain diseases, with the tolerance for 

blackleg being 0.1 % of the crop. If they fail to meet this classification (or exceed the 

number of field generations) then they can be downgraded to BASIC SE (blackleg 

tolerance 0.5 %) or BASIC E (blackleg tolerance 1 %) or fail to be classified at all if 

the disease load is too high (SASA, 2017). The inspection process occurs at least 

twice, initially in early July and then a few weeks later, with a third inspection if 

required within the last week of July (SASA, 2015). These inspections form the basis 

of the crop inspection report, however the crop will be subject to ongoing 

assessments throughout the growing season and therefore roguing occurs 

throughout. Roguing is the physical removal of plants showing signs of disease (or 

other undesirable traits) and requires teams of people to walk through the crop to 

check for and remove diseased plants. This activity can itself cause damage to the 

canopy of the crop and could possibly spread disease such as blackleg if the 

conditions are wet, although more research is required to verify this (Toth et al., 

2016). 
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Crop inspection requires a person(s) to walk through potato fields and visually 

identify and record plants showing signs of disease. However, this is very time 

consuming, it increases the chance of damage to the crop canopy, diseased plants 

can be difficult to identify (especially if symptoms are not yet developed or in the 

early stages), and their spatial distribution is difficult to assess. Recording spatial 

distribution is currently not carried out, but it would be particularly useful in modelling 

disease spread (Skelsey et al. 2016). The outcome of a crop inspection is central to 

certification and determines the overall grade (and therefore the price) of a seed 

crop and allows growers to make decisions regarding the best way to store and 

subsequently sell the crop, as well as manage it in future generations. 

 

4.5 Blackleg disease 
Blackleg disease of potato plants and tubers is caused by different bacterial 

pathogens belonging to the genera Pectobacterium and Dickeya, formerly Erwinia 

species (Charkowski, 2015). In Scotland, the disease is largely caused by 

Pectobacterium atrosepticum (Pba), via contaminated seed tubers (Pérombelon, 

2002). Worldwide, blackleg disease is a major contributor to the loss of potato crops, 

and in some countries is the main cause of seed tuber failure and downgrading, e.g. 

in the Netherlands strict tolerances for certification have led to direct losses of up to 

€30M annually (Toth et al. 2011). 

 
The bacteria causes rotting of the seed tuber if it is contaminated, either through 

planting (or harvesting) equipment or due to overwintering storage and if soil 

moisture and temperature favour the development of the pathogen it can spread 

through the soil and contaminate progeny tubers (Toth et al., 2003; Charkowski, 

2015). It is mobile in water so can spread to neighbouring plants and can be 

transmitted via insects (Charkowski, 2015). 

 
The disease is called blackleg as the most characteristic symptom caused by 

infection is a slimy black rot lesion that spreads from the rotting seed tuber up the 

stems (Czajkowski et al. 2011; figure 4-5a). This typically occurs under wet 

environmental conditions but if dry, stunting, wilting, yellowing and desiccation of 

stems and leaves can occur (Czajkowski et al. 2011; figure 4-5b). Unlike infections 

by fungi, oomycetes and insects, there are no chemical treatments for these 

pathogens, and breeding for disease resistance has been minimal, making it 
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necessary to control disease through crop inspections and certification of the 

resulting seed potatoes (Czajkowski et al. 2011). 

 

  
Figure 4-5 : (A) Close up image of a potato plant stem showing typical “blackleg” 
symptom (SASA, 2018); (B) Example of wilted potato plant due to blackleg 
infection. 
 

4.6 Aim of the case study 
The aim of this case study is to identify if a UAS equipped with COTS cameras can 

detect and map the onset of disease within a crop of potatoes, with an effective level 

of accuracy. Both visual analysis and automatic assessment of the imagery will be 

compared with conventual ground based disease inspection results. 

 
Due to time pressures at the time of starting analysis to get sufficient data to enable 

the creation of Gibson-Poole et al. (2017) and difficulties with identifying a suitable 

normalisation method, the imagery captured was not normalised as indicated in 

chapter 3. Therefore, this analysis was conducted primarily from the viewpoint of the 

structure and growth of each individual plant, modelling its development from 

emergence to maturity (or death if it became diseased), with limited reliance on the 

spectral qualities of the imagery. 

 

4.7 Materials and Methods 

4.7.1 Trial layout 
The trial plots used for this experiment were located to the west of Dundee, Scotland 

and were part of a set of varied trial plots designed to show either different potato 

varieties or treatments as part the Potatoes in Practise 2016 display (James Hutton 

Institute, 2016). Planting occurred on 5/5/2016 and the trial was composed of 2 plots 

of 16 rows (figure 4-6), each containing 12 tubers of the variety Hermes that had 

A B 
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been planted by hand with ~30 cm spacing between tubers (91 cm between rows). 

All of the tubers had been exposed to blackleg forming bacteria (Pectobacterium 

atrosepticum) before planting, and the reason for the trial was to demonstrate best 

practise tuber storage and haulm destruction methods. 

 

 
Figure 4-6: The layout of the trial showing plant growth at 47 days after 
planting. The orange discs are GCPs. 

 

4.7.2 Ground data collection 
A visual assessment (ground truth) was carried out by an experienced observer 70 

days after planting (DAP), to identify the number of emerged plants (GROUNDemerge) 

and show the presence or absence of disease for each emerged plant 

(GROUNDdisease), along with an indication of the disease symptoms displayed at that 

time. 
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4.7.3 Aerial data collection 
Aerial data was acquired using the UAS and sensor package indicated in chapters 2 

& 3, at 22 (pre- emergence), 28, 34, 39, 47, 52, 62, 67, 75 and 85 DAP, at varying 

times of the day and environmental conditions (full sunlight ~ overcast; table 4-1). 

Data was acquired using a pre-programed automatic flight at 35 m above ground 

level (AGL) to capture imagery with a GSD of ~1 cm per pixel and with an expected 

image overlap of 62% and side overlap of 87 %. The speed of the UAS was limited 

to 2 m/s to allow for the integration time of the sensors. Georectification of imagery 

was assisted by the placement of nine GCPs surveyed using a Piksi (Swift 

Navigation, San Francisco, USA) real-time kinematic GPS with an expected 

accuracy of ±8 cm. 

 
Table 4-1: Time each survey conducted, 
and environmental conditions encountered. 
 

DAP Time Conditions 
22 13:00 Overcast 
28 15:00 Cloudy/sunny 
34 14:00 Sunny 
39 19:00 Very overcast 
47 16:00 Cloudy/sunny 
52 11:00 Overcast 
62 13:00 Overcast 
67 15:00 Cloudy/sunny 
75 14:30 Sunny 
85 18:00 Overcast 

 

 

4.7.4 Image processing 
Image pre-processing was carried out as indicated in chapter 3 however 

normalisation was not performed. All three sets of data were processed using 

Agisoft Photoscan (v1.2.5; Agisoft LLC, St. Petersburg, Russia), using high settings 

(image alignment highest; dense cloud high quality; depth filtering mild) and 

optimised using the 9 GCPs placed around the trial plots (using an estimated 

accuracy of 0.15 m). Ideally there should have been 10 GCP to provide the highest 

level of accuracy (Photoscan, 2018), however the 10th GCP did not have sufficient 

image overlap to be reliable and so was not used. 

 

4.7.4.1 Orthomosaic co-registration 
The linear orthomosaic data from unmodified and modified cameras needed to be 

co-registered and combined into a single 6 band orthomosaic, however small shifts 

in position were noticed between the two. This was most likely caused due to slight 
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differences in viewing angle, both from the position of the cameras in the gimbal and 

due to extra distortion from the 585 nm long pass filter applied to the modified 

camera, leading to slightly different geometry between the orthomosaics. To remedy 

this, ArcGIS (v10; ESRI, Redlands, USA) was used to georeference the linear 

orthomosaic from the modified camera to that of the unmodified camera, using the 

adjust transformation with a minimum of 10 control points leading to root mean 

square (RMS) errors of < 0.01 m. 

 

4.7.4.2 Plant height layer creation 
A pre-emergence orthomosaic and DSM was captured at 22 DAP as this was 

intended to serve as the base ground height to allow crop height models to be 

created in the same fashion as Bendig et al. (2013). However, inaccuracies were 

encountered in the resulting crop height models, where the slope of the ground 

appeared to alter between sensing dates (figure 4-7). The reason for this is unclear 

but most likely due to inaccuracies of the GCP, an issue that Bendig et al. (2013) 

also encountered. 

 

 
Figure 4-7: Changes in height from 28 – 34 DAP, both sensing dates set to display 
at the same scale (rows are visible due to slight shift in georeferenced position 
between sensing dates); (A) 28 DAP, ground appears to slope upwards towards the 
South East; (B) 34 DAP, ground appears to slope upwards toward the the North 
West. 

B A 
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To remedy this issue, ground surface points containing no (or minimal) vegetation 

were selected for each sensing date and used to create an interpolated DTM. 28 

points were placed around the two plots (figure 4-8a) and their elevation captured 

for each sensing dates DSM. The ArcGIS spline command (regularised, default 

options of 0.1 weight and 12 for number of points) was used to create the 

interpolated DTM, allowing the crop height model to be created (DSM – DTM). This 

allowed for effective crop height models that included the ridge of each row (figure 

4-8b), however as this remained constant across sensing dates this inaccuracy was 

ignored from a further processing perspective. 

 

  
Figure 4-8: (A) Position of points used to estimate DTM for each sensing date; (B) 
Example crop height model at 28 DAP, showing that row ridges are included within 
the height captured for each plant. 
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4.7.5 Manual image analysis method 
ArcGIS was used by an assessor (the author) to visually assess the imagery to 

identify if a plant had emerged or was diseased, using both true and false colour 

orthomosiac data. For each date a plant emergence point was added if the assessor 

was satisfied it was valid (not noise) and a plant would then be marked as diseased 

at a later date, if the assessor believed that signs of disease were showing (e.g. 

canopy discolouration, canopy loss or stunting). The assessor could go back in time 

through the data but not forward beyond the date they were currently investigating 

(the test was done blind; i.e. not referring to the ground data collected by the 

experienced observer). These methods are referenced as MANemerge for emergence 

results and MANdisease for disease detection results. 

 

4.7.6 Automatic emergence and plant count analysis method 
To automatically detect emergence, ArcGIS was used to create region of interest 

(ROI) across the top of each row, derived from a 15 cm buffer of a line manually 

drawn along the centre of each row, covering each point of planting. A normalised 

difference vegetation index layer (NDVI; Rouse et al. 1973) was created and 

thresholded manually for each date to delineate potato vegetation from soil, using 

the formula in eq. 4-1. 

 

𝑁𝐷𝑉𝐼 =
𝐷𝑁𝑁𝐼𝑅 − 𝐷𝑁𝑅

𝐷𝑁𝑁𝐼𝑅 + 𝐷𝑁𝑅
 (4-1) 

 

Where 𝐷𝑁𝑁𝐼𝑅 refers to the DN from the blue channel of the modified camera and 
𝐷𝑁𝑅  refers to the DN from the red channel of the unmodified camera. 
 
A model was formed in ArcGIS (figure 4-9a) that created potato vegetation and soil 

polygons from the NDVI layer of the date being processed, clipped to the ROI. 

These polygons were then fed into a second model (figure 4-9b) that removed the 

following sensing dates soil polygons from the current sensing dates vegetation 

polygons in order to reduce potential noise. 
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Figure 4-9: ArcGIS models (blue are inputs; yellow are processes; green are 
outputs); (A) thresholding model devised to create soil and vegetation polygons 
(clipped to each rows ROI) for each sensing date; (B) emergence model used to 
create emergence points from vegetation polygons as long as they were not within a 
vegetation buffer from the previous sensing date. 
 
 
The model then marked the centre of each remaining vegetation polygon as an 

emergence point (figure 4-10b) and a buffer of 2 cm per day between the current 

and following sensing date was then applied to the current sensing date’s vegetation 

polygons, to simulate the growth of the plants’ canopy between sensing dates 

(figure 4-10c). Each subsequent date was processed using the same method, 

except that any new emergence points were ignored if they were within the 

vegetation buffer of the previous sensing date, as these were most likely from the 

same plant. This process was repeated until no new emergence points were 

discovered across all of the rows. Once all sensing dates had been processed, a 

central point for each plant needed to be identified from the emergence points to 

allow a plant count. As several emergence points could come from a single tuber, 

emergence points that were located within 15 cm of each other were classed as 

being from the same plant and were amalgamated into a central point (figure 4-10e). 

This method is referenced as AUTOemerge. 

A 

B 
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Figure 4-10: Example detection of emergence points using AUTOemerge. (A) Pre-
emergence, centre line of plot (black line) and region of interest (red box); (B) 28 
DAP, emergence points detected (green dots); (C) 34 DAP, new emergence points 
(blue dots) but none recorded under the vegetation buffer (orange polygons) from 28 
DAP; (D) 39 DAP, final emergence point detected (purple dot), but none recorded 
under the vegetation buffer (orange polygons) from 34 DAP; (E) Final plant points 
(red dots) created from amalgamated emergence points. 
 

4.7.7 Automatic disease detection analysis method 

4.7.7.1 Classification of potato vegetation 
Although pixel-based thresholding of vegetation and soil had been carried out for the 

emergence count, it was not run against the entire dataset (it stopped after 100 % 

emergence) and did not account for potato flowers. Potato flowers would be marked 

as soil due to their low NDVI values, leading to potential gaps within the potato 

canopy at sensing dates were flowers were present. Therefore, the 6 band data sets 

for each date were classified using the open source OBIA software InterImage 

(v1.43; Camargo et al. 2012) in order to extract vegetation, flowers and identify 

areas of shadow. 

 
Due to the image size limitations of InterImage (InterImage, 2010), an ArcGIS model 

was used to clip each row from the 6-band imagery layer using a 60 cm buffer 

around the centre line of each row (figure 4-11a). The semantic net (processing 

workflow) used three classes (potato, potato flowers and shadows) which were all 

A B C D E 
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assigned using the TA_Arithmetic operator (a pixel-based thresholding operator) to 

denote either: 

 

 Potato vegetation 

o 
𝐷𝑁𝑁𝐼𝑅−𝐷𝑁𝑅

𝐷𝑁𝑁𝐼𝑅+𝐷𝑁𝑅
 >= (NDVI threshold for that sensing date) 

 

 Areas of shadow 

o 
𝐷𝑁𝑅+𝐷𝑁𝐺+𝐷𝑁𝐵+𝐷𝑁𝑁𝐼𝑅

4
 <= 2000 

 

 Potato flowers 

o 
𝐷𝑁𝑁𝐼𝑅−𝐷𝑁𝑅

𝐷𝑁𝑁𝐼𝑅+𝐷𝑁𝑅
 < NDVI threshold for that sensing date AND 

o Brightness (function) >= 15000 
 

Where 𝐷𝑁𝑁𝐼𝑅 refers to the DN from the blue channel of the modified camera, 𝐷𝑁𝑅  
refers to the DN from the red channel of the unmodified camera, 𝐷𝑁𝐺  refers to the 
DN from the green channel of the unmodified camera and 𝐷𝑁𝐵  refers to the DN 
from the blue channel of the unmodified camera. 
 
Once all plots had been classified (figure 4-11b), vegetation and potato flowers were 

merged using ArcGIS into a single polygon layer (shadowed areas were ignored), to 

give the total vegetation for each sensing date. 

 

 
Figure 4-11: Part of trial plot at 75 DAP; (A) Visual image showing maximum 
extent of 60 cm buffer applied to each row (red polygon); (B) Classification of the 
same scene (green = vegetation, yellow = flowers, black = shadows and brown = 
soil).  
 

A B 
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4.7.7.2 ROI and measures 
To monitor the structural changes in the canopy of each plant, further ROI were 

created using ArcGIS that would be specific for each plant being monitored. All of 

the emergence points previously detected were buffered by 7.5 cm (dissolved) in 

order to create emergence point regions of interest (eROI, figure 4-12a) and as each 

eROI could contain more than one emergence point, the centre of each eROI was 

marked as the location of a plant (the plant point). Plant regions of interest (pROI) 

were then created by delineating an area around each plant point using Thiessen 

polygons, clipped to a maximum of 60 cm from each plant point (figure 4-12b). 

 

 
Figure 4-12: (A) Example pROI created from Thiessen polygons generated from 
plant points; (B) Example eROI created from buffering emergence points. 
 
pROI are essentially the growing space allocated to each plant and can be used to 

identify changes in canopy ground cover and height within that space. However, as 

there are several days between sensing dates, an individual plant could die back 

within that time frame and their neighbouring plants could spread out into the pROI of 

the dead plant. This could confuse any measurements made so the eROI can be 

used to detect for this as it is much more focused on each individual plant and can 

also be used to detect any breakup of the plants’ canopy. Various measures using 

the eROI and pROI were investigated manually to identify their viability in detecting 

disease, with those in table 4-2 being selected to use within the model. 

 
  

A B 
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Table 4-2: Description of measures to be used within the disease detection model. 
 

Measure Description 
pGROWTH pROI percentage of canopy growth from previous to current sensing 

date for a single plant. 
pGROWTH

MEAN Mean pROI percentage of canopy growth from previous to current 
sensing date for all plants not marked as diseased. 

pGROWTH
STD Standard deviation of mean pROI percentage of canopy growth from 

previous to current sensing for all plants not marked as diseased. 
pVOLUME pROI volume of vegetation for current sensing date for a single 

plant. 
pVOLUME

MEAN Mean pROI volume of vegetation for current sensing date for all 
plants not marked as diseased. 

pVOLUME
STD Standard deviation of mean pROI volume of vegetation for current 

sensing date for all plants not marked as diseased. 
eHEIGHT eROI mean height of vegetation for current sensing date for a single 

plant. 
eHEIGHT

MEAN Grand mean of eROI mean height of vegetation for current sensing 
date for all plants not marked as diseased. 

eHEIGHT
STD Standard deviation of grand mean of eROI mean height of 

vegetation for current sensing date for all plants not marked as 
diseased. 

eCOVER eROI percentage of canopy cover for current sensing date for a 
single plant. 

 

 

4.7.7.3 Disease detection model 
A disease detection model was then built within ArcGIS (figure 4-13; figure 4-14 

shows the step-by-step workflow for this complicated model) based around the 

concept that healthy plants will be increasing their growth within the pROI, until 

saturation occurs (i.e. the plants’ canopy cover has filled its pROI) or the plants are 

beginning to senesce. To identify potential cases of disease, thresholds for each 

measure needed to be identified and initial work using fixed thresholds (Gibson-

Poole et al., 2017) revealed that that these needed to be able to adapt to the 

changes in the growth of the plants as they progress through their different growth 

stages. To facilitate this these thresholds were based on the mean and standard 

deviation of each measure for all of the plants within the trial that were known not to 

be diseased. 
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Some plants could lose a significant proportion of their canopy between sensing 

dates due to the onset of disease, which in turn could distort the pGROWTH
MEAN and 

pGROWTH
STD measures of the plant population. Therefore, the model tries to filter the 

most likely cases of diseased plants first, by identifying plants that show very low or 

negative canopy cover growth compared to their peers (figure 4-14). 

 

 
Figure 4-14: Workflow of the disease detection model. The blue section is the first 
pass to detect obvious disease plants. The orange section identifies a new set of 
non-diseased plants that does not include these obviously diseased plants. The 
green section marks remaining plants as diseased if their volume or height is less 
than the population mean. 
 
The threshold used for this initial selection (1st pGROWTH

THRESHOLD) could be altered by 

applying a multiplication factor to the PGROWTH
STD measure (figure 4-14), allowing 

different thresholds to be tested to identify which gave the best results. Plants that 

showed a reduction in their eCOVER measure from the previous to the current sensing 

date being reviewed could also be a sign of disease that might be missed by the 

pGROWTH measure if neighbouring plants had encroached into the pROI of the 

diseased plant. The expectation is that the eCOVER measure should always be 100 % 

canopy cover, however the threshold used for this measure could also be altered to 

identify if more flexibility is required (figure 4-14). 

 
With these potentially diseased plants marked, a new selection is made of the 

remaining plants that are showing lower than average growth compared to their 

peers. The threshold used for this second selection (2nd pGROWTH
THRESHOLD) could also 
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be altered by changing the multiplication factor to the PGROWTH
STD measure (figure 4-

14), to allow testing for an optimum selection. This final selection of plants were then 

marked as diseased if they showed a lower than average pVOLUME or a lower than 

average eHEIGHT. 

 

4.8 Results 
As the emergence and disease detection models are based at the plant level, they 

essentially creating maps of the spatial extent of emergence and disease throughout 

the trial. Therefore, measures of accuracy for detecting both emergence and 

disease were computed using error matrices with kappa (Ǩ) statistics (eq. 4-2) that 

consider the actual agreement between classes whilst taking into consideration the 

possibility of agreement by chance (Foody, 2002; Rogan et al., 2002). The error 

matrix gives three main outputs, with the overall accuracy (OA) being an average of 

all of the correct matches (i.e. number of plants correctly identified as diseased / 

total number of plants). The users accuracy (UA) corresponds to the error of 

commission (inclusion; i.e. a plant was marked as diseased when it wasn’t 

diseased) and producers accuracy (PA) corresponds to the error of omission 

(exclusion; i.e. a plant was not marked as diseased when it fact it was diseased). 

 

Ǩ =
𝑃𝑜 − 𝑃𝑐

1 − 𝑃𝑐
 

 

(4-2) 

Where 𝑃𝑜 represents actual agreement and 𝑃𝑐 represents chance agreement (Weih 
et al., 2010). 
 
The level of accuracy required is subjective, with Foody (2002) indicating 85 % for 

OA, UA and PA, whereas others indicated OA 85 % and PA/UA of at least 70 % is 

adequate (Thomlinson et al., 1999; Pringle et al., 2009). A scale for Ǩ is given by 

Landis & Koch (1977), indicating that Ǩ < 0.41 is poor, 0.41–0.61 is moderate, 0.61–

0.81 is good and >0.81 is excellent. Therefore, for the results to be considered as 

accurate and reflecting reality, OA should be >= 85 %, PA/UA should be >= 70 % 

and Ǩ should be > 0.61. 

 

4.8.1 Emergence and plant count results 
Actual date of emergence could not be verified as only one ground truth measure 

was available and as this was at 70 DAP, it was only useful for plant count analysis. 

GROUNDemerge identified 385 plants in total, with one case of non-emergence and 



  

111 
 

two extra plants (left-over tubers had been planted). 385 plants were detected using 

both MANemerge and AUTOemerge methods however, both methods identified two 

cases of non-emergence and three extra plants. Due to this disparity (which would 

also affect disease detection analysis results) GROUNDemerge was reviewed along 

with the aerial data by the experienced observer, resulting in the change of the 

ground truth to match that of what was observed with the aerial data, as it was clear 

from images before 70 DAP where cases of non-emergence and extra plants were 

present. 

 
Therefore, GROUNDemerge, MANemerge and AUTOemerge agreed exactly with regards to 

plant counts, but differences in date of plant emergence could still be compared 

between the two methods. MANemerge indicated that 69% of the plants had emerged 

by 28 DAP and all plants had emerged by 39 DAP. The AUTOemerge differed slightly 

as it indicated that 71% of plants emerged by 28 DAP but did not detect that all had 

emerged until 47 DAP (due to one plant). Although AUTOemerge did not detect all 

plants until a later date, it tended to identify emergence slightly earlier than 

MANemerge, with 13 plants detect at an earlier date and only 7 later, resulting in an 

excellent level of agreement between the two methods (OA 95 %, Ǩ 0.88; table 4-3). 

 
Table 4-3: Error matrix of plant emergence at DAP for MANemerge and AUTOemerge. 
 

  

Producer 
(MANemerge) 

  

U
s

e
r 

(A
U

T
O

e
m

e
rg

e
) (DAP) 28 34 39 47 Total UA 

28 262 13 0 0 275 0.95 

34 5 102 0 0 107 0.95 

39 0 1 1 0 2 0.50 

47 0 0 1 0 1 0.00 

 
Total 267 116 2 0 (385) 

 

 
PA 0.98 0.88 0.50 1.00 

 
OA (0.95) 

 

 

4.8.2 Disease detection results 
As the emergence analysis detected anomalies with the ground truth and the 

remotely sensed data extended beyond 70 DAP, the experienced observer re-

evaluated GROUNDdisease through visual analysis of the imagery, to include all plants 

that showed obvious signs of disease at 75 DAP. This decision was made so that 

the ground truth would be more representative of the condition of plants by 75 DAP, 

especially as the signs and effects of blackleg disease could become apparent 
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within a 5 day period (Humphirs, 2016). Unfortunately, a final ground truth 

scheduled to take place just after 85 DAP was not undertaken as the plots had been 

prepared for the Potatoes in Practise event before this could be carried out (haulm 

destruction), so results cannot be compared directly at this final sensing date. By 70 

DAP, GROUNDdisease had initially identified 85 diseased plants, which rose to 98 to 

take into account plants that showed obvious signs of disease at 75 DAP. 

 

4.8.2.1 Identification of model thresholds 
Testing of the 1st pGROWTH threshold independently from any other measures within 

the model revealed that a threshold multiplier of 1.7 resulted in 0 incorrect 

detections and if it were increased towards 2 then fewer correct detections were 

made, but if decreased towards 1 then more correct and incorrect detections were 

made (Table 4-4). Testing the eCOVER threshold independently from any other 

measure revealed that a canopy cover of 97 % within the eROI gave a high number 

of correct detections with minimal incorrect detections, and if this were increased 

towards 100 % then the number of incorrect detections rises faster than the number 

of correct detections, and if it was reduced towards 95 % then the number of correct 

detections would reduce by a larger amount of incorrect detections (Table 4-5). 

 
Table 4-4: Independent testing results of 
1st pGROWTH

THRESHOLD to 75 DAP.  
 

Threshold 
multiplier 

Correct 
Number 

of 
Diseased 

Plants 

Incorrect 
Number 

of 
Diseased 

Plants 

Incorrect 
Detections 

as 
Proportion 

of 
Population 

1 76 52 13.5 % 

1.1 72 34 8.8 % 

1.2 68 26 6.8 % 

1.3 63 15 3.9 % 

1.4 60 8 2.1 % 

1.5 57 3 0.8 % 

1.6 52 2 0.5 % 

1.7 47 0 0.0 % 

1.8 43 0 0.0 % 

1.9 38 0 0.0 % 

2 35 0 0.0 % 
 

Table 4-5: Independent testing results 
of eCOVER canopy cover % to 75 DAP. 
 

Canopy 
Cover 

(%) 

Correct 
Number 

of 
Diseased 

Plants 

Incorrect 
Number 

of 
Diseased 

Plants 

Incorrect 
Detections 

as 
Proportion 

of 
Population 

100 73 46 12.0 % 

99 66 13 3.4 % 

98 65 7 1.8 % 

97 65 6 1.6 % 

96 63 5 1.3 % 

95 62 4 1.0 % 

94 60 4 1.0 % 

93 60 3 0.8 % 

92 58 3 0.8 % 

91 56 3 0.8 % 

90 54 3 0.8 % 
 

 
The 1st and 2nd pGROWTH

THRESHOLD were then tested together with eCOVER fixed to 97%, 

to identify which combination of thresholds produced the most correct and least 
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incorrect detections (table 4-6). For each change in the 1st pGROWTH
THRESHOLD 

multiplier, the optimum 2nd pGROWTH
THRESHOLD multiplier of 1.2 always gave the best 

ratio between correct and incorrect results. If this threshold were decreased towards 

1, incorrect results would increase by a larger amount than correct and if the 

threshold was increased towards 1.3, then correct results would decrease by a 

larger amount than incorrect (table 4-6). 

 
Table 4-6: Identifying ideal disease model thresholds (using 1st and 2nd 
pGROWTH

THRESHOLD) to 75 DAP. 
 

1
st
 

Multiplier 
2

nd
 

Multiplier 

e
COVER

 
Canopy 
Cover 

(%) 

Correct 
Number 

of 
Diseased 

Plants 

Incorrect 
Number 

of 
Diseased 

Plants 

Correctly 
Identified 
Diseased 

Plants 

Incorrect 
Detections 

as 
Proportion of 

Population 

Selected 
Threshold 

Combinations 

1.7 1 97 82 15 83.7 % 3.9 %  

1.7 1.1 97 82 13 83.7 % 3.4 %  

1.7 1.2 97 82 13 83.7 % 3.4 %  

1.7 1.3 97 80 13 81.6 % 3.4 %  

1.6 1 97 83 16 84.7 % 4.2 %  

1.6 1.1 97 82 13 83.7 % 3.4 %  

1.6 1.2 97 82 13 83.7 % 3.4 % AUTO
disease1

 

1.6 1.3 97 80 12 81.6 % 3.1 %  

1.5 1 97 83 24 84.7 % 6.2 %  

1.5 1.1 97 83 18 84.7 % 4.7 %  

1.5 1.2 97 83 15 84.7 % 3.9 % AUTO
disease2

 

1.5 1.3 97 81 14 82.7 % 3.6 %  

1.4 1 97 85 31 86.7 % 8.1 %  

1.4 1.1 97 84 24 85.7 % 6.2 %  

1.4 1.2 97 84 22 85.7 % 5.7 % AUTO
disease3

 

1.4 1.3 97 82 20 83.7 % 5.2 %  

1.3 1 97 85 40 86.7 % 10.4 %  

1.3 1.1 97 84 32 85.7 % 8.3 %  

1.3 1.2 97 84 29 85.7 % 7.5 %  

1.3 1.3 97 83 24 84.7 % 6.2 %  
 

 

4.8.2.2 Accuracy assessment of methods 
MANdisease and the three threshold combinations that showed the best ratio between 

correct and incorrect detections (AUTOdisease1, AUTOdisease2 and AUTOdisease3; table 4-

7) were then compared with GROUNDdisease to identify which gave the most accurate 

representation of conditions on the ground. 
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Table 4-7: Disease detection accuracy by 75 DAP; expected number of diseased 
plants (E); observed number of diseased plants (O); correctly identified diseased 
plants (C); producers accuracy for disease present (PA); users accuracy for disease 

present (UA); overall accuracy (OA); and kappa statistic (Ǩ). 
 

Comparison E O C PA UA OA Ǩ 

GROUNDdisease
 vs 

MANdisease
 

98 80 80 82% 100% 95% 0.87 

GROUNDdisease
 vs 

AUTOdisease1
 

98 95 82 84% 86% 92% 0.80 

GROUNDdisease
 vs 

AUTOdisease2
 

98 98 83 85% 85% 92% 0.79 

GROUNDdisease
 vs 

AUTOdisease3
 

98 106 84 86% 79% 91% 0.76 
 

 
MANdisease identified 80 diseased plants by 75 DAP (all excluding the cases of non-

emergence) and showed an effective level of accuracy and excellent agreement 

with GROUNDdisease (OA 95 % and Ǩ 0.87). It produced no incorrect detections (false 

positive results) but produced the lowest number of correct detections (table 4-8). 

AUTODISEASE2 produced the highest accuracy scores out of the three automatic 

model combinations (85 % for all UA and PA) and was selected as the model for 

further analysis. It identified slightly more correct detections (83) compared to 

MANDISEASE but it also produced 15 incorrect detections (table 4-9). However, 

AUTOdisease2 still showed an effective level of accuracy with a good level of 

agreement with GROUNDdisease (OA 92 % and Ǩ 0.79). 

 
Table 4-8: Error matrix of plant disease 
by 75 DAP for MANdisease and 
GROUNDdisease; (D = disease present; 
ND = no disease present). 
 

Table 4-9: Error matrix of plant disease 
by 75 DAP for AUTOdisease2 and 
GROUNDdisease; (D = disease present; 
ND = no disease present). 
 

  

Producer 
(GROUND

disease
) 

 

U
s
e
r 

(M
A

N
d

is
e
a
s
e
) 

 D ND Total UA 

D 80 0 80 1.00 

ND 18 287 305 0.94 

Total 98 287 (385) 
 

 
PA 0.82 1.00 

 
OA 

(0.95) 
 

  

Producer 
(GROUND

disease
) 

 

U
s
e
r 

(A
U

T
O

d
is

e
a
s
e
2
) 

 D ND Total UA 

D 83 15 98 0.85 

ND 15 272 287 0.95 

Total 98 287 (385) 
 

 
PA 0.85 0.95 

 
OA 

(0.92) 
 

 

4.8.2.3 Identification of most effective measure 
AUTOdisease2 could not start detecting disease until 52 DAP, once AUTOemerge had 

identified all of the emergence points, however MANdisease did not detect any disease 

plants until this date either. Both methods also identified a few more valid diseased 
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plants by the final sensing date (85 DAP), with MANdisease correctly identifying 84 

diseased plants in total, and AUTOdisease2 slightly higher at 85 (figure 4-15x). 

 

 
Figure 4-15: Total number of detections and number of correct directions for 
MANdisease and AUTOdisease2 at each sensing date. 

 
As the visual analysis of MANdisease is mainly taking into consideration the 

discoloration or loss of canopy, identification of the measures used by AUTOdisease2 

to successfully (or erroneously) identify disease was also undertaken to see which 

measures had the most impact. Nearly half of the diseased plants detected were 

identified from very low growth using the pGROWTH measure, followed by the eCOVER 

measure, then pVOLUME and lastly eHEIGHT. A small number of incorrect detections 

were made using all of the measures, but the largest contribution of incorrect 

detections occurred using the eCOVER measure (table 4-10, figure 4-16). The majority 

of incorrect detections occurred on the last sensing date (75 DAP) for all measures 

except pGROWTH (figure 4-1b). 

 
Table 4-10: Correct and incorrect detections of diseased plants by each measure 
used in AUTOdisease2 up to 75 DAP. 
 

AUTO
DISEASE2

 
Measures 

Correct 
Detections 

Correct Detections as 
Percentage of Total 

Detections 

Incorrect 
Detections 

Incorrect Detections 
as Percentage of Total 

Detections 

pGROWTH 48 49.0% 4 4.1% 
pVOLUME 12 12.2% 3 3.1% 
eHEIGHT 8 8.2% 2 2.0% 
eCOVER 15 15.3% 6 6.1% 
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Figure 4-16: (A) Number of plants correctly identified as diseased at each sensing 
date for each measure used in AUTOdisease2; (B) Number of plants incorrectly 
identified as diseased at each sensing date for each measure used in AUTOdisease2. 
 
Comparisons between MANdisease and AUTOdisease2 were also made with regards to 

which method detected valid cases of disease the earliest and whether they 

detected the same diseased plants, including valid detections made by 85 DAP 

(table 4-11). The agreement between the two methods was poor, showing an 

ineffective level of accuracy (OA 55%) and barely moderate agreement (Ǩ 0.42). 

This was because AUTOdisease2 tended to detect disease earlier than MANdisease, and 

although most of the valid cases of disease were detected by both methods (79 

valid cases), there were 5 diseased plants detected by MANdisease that were not 

detected by AUTOdisease2 and 6 diseased plants detected by AUTOdisease2 that were 

not detected by MANdisease. 

 
Table 4-11: Error matrix of disease detection at DAP for MANdisease and 
AUTOdisease2. 
 

  
Producer 

(MAN
disease

) 
 

  

 
(DAP) 52 62 67 75 85 

No 
Disease 

Total UA 

U
s
e
r 

(A
U

T
O

d
is

e
a
s
e
2
) 

52 1 5 3 0 0 1 10 0.10 

62 0 15 7 3 0 1 26 0.58 

67 0 2 9 5 0 1 17 0.53 

75 0 1 4 20 2 3 30 0.67 

85 0 0 0 1 1 0 2 0.50 

No 
Disease 

0 1 2 1 1 8 13 0.62 

 
Total 1 24 25 30 4 14 (98) 

 

 
PA 1.00 0.63 0.36 0.67 0.25 0.57 

 
OA 

(0.55) 
 

 
  

A B 
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4.9 Discussion 

4.9.1 Emergence and plant counts 
The first sensing date post emergence (28 DAP) revealed that more than 50% of the 

plants had emerged (for both MANemerge and AUTOemerge) however, as the ground 

truth was only carried out at 70 DAP, the actual date of 50 % emergence of plants 

could not be verified. This measure can be used to identify the future development 

of the plants as it enables prediction of tuber initiation (O'Brien et al., 1998), 

however this measure was not important for the results of this trial although the 

number and position of each emerged plant was. Plant counts for both methods 

were excellent (exact in fact) once the ground truth had been amended to take into 

account the small number of anomalies identified during visual analysis. This 

demonstrates an advantage of using repeat aerial surveys, as data can be re-

evaluated at a later date if results are not consistent with expectations, which is not 

so easily done if only paper-based records of ground surveys are available. 

 
MANemerge relied on the assessor being able to recognise and filter out potential 

points of noise caused by defective pixels (primarily from the NIR camera), however 

for AUTOemerge their potential influence on the results was addressed through the 

use of a limited ROI for the detection (15 cm around the centre of each row) and the 

identification of what was vegetated (or not) for the following sensing date. This 

means that there will be a delay in effective emergence detection as it will always be 

a sensing date behind, however this could be remedied through the elimination of 

defective pixels in the cameras or the development of alternate ways to detect them. 

Having to manually identify the centre of each row to be able to create a ROI to 

enable the AUTOemerge method to work satisfactorily is also not ideal but was 

required to reduce the number of possible emergence points due to noise or the 

detection of non-potato vegetation (e.g. weeds) between rows. MANemerge did not 

require the ROI as the assessor could make judgements directly as to whether an 

emergence point was noise or a weed in between rows but the creation of the ROI 

could have been more automated through the use of high accuracy GNSS to mark 

the start and end of each row, either through a ground based manual survey or 

attached to any automatic planting equipment that might be being used. 

Alternatively, automated crop row detection could be attempted using the Houghton 

transform technique, as demonstrated by (Pérez-Ortiz et al., 2015). 
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When compared to a similar study on potato emergence by Sankaran et al. (2017), 

it could be said that the AUTOemerge method is superior (although potentially 

computationally more expensive), especially as the use of a daily growth buffer 

allowed the detection of newly emerged plants at later stages, even after within-row 

canopy closure had occurred for the majority of plants. However, in this trial the 

tubers had been placed by hand and so were well spaced, plus weed control had 

been effective with only a limited amount of non-potato vegetation present within the 

emergence period. Spacing of tubers and weed control are important factors to 

ensure effective growth within the crop (Bussan et al. 2007), but less optimal 

conditions in these factors may decrease the effectiveness of AUTOemerge detection 

method. 

 
Similarly, the use of a hard growth factor for the vegetation buffer (at 2 cm per day) 

may not be applicable in all circumstances and may need to be varied based upon 

weather conditions and fertilizer inputs made within the sensing period. The growth 

factor value was determined through visual analysis and as the model created 

allowed for variation of this factor, different values could be attempted (2 cm per day 

happened to work well for this trial). The use of this buffer also influenced the final 

position allocated to each plant, which was good in general (i.e. ~30 cm spacing 

between plants was achieved) but could be slightly offset if the growth buffer of one 

plant had encroached onto the vegetation of a newly emerging neighbour. The final 

position of each plant is important in being able to delineate a “growth space” to be 

used as a ROI for disease detection (the pROI and eROI), so errors at this stage could 

affect the disease detection results. An addition to the model, perhaps incorporating 

Sankaran et al. (2017) concepts of binary thresholding and plant vegetation sizing, 

or by looking more closely at the maximum height of each potential plant, could 

allow for improved placement of each plant point. 

 

4.9.2 Vegetation thresholding 
The disease detection and emergence automatic methods relied on a thresholded 

NDVI value in order to separate vegetation from soil. In this study this value was set 

manually though a visual assessment for each survey date, but ideally the automatic 

detection of this value should be made. This was investigated using a similar 

method to Rabatel et al. (2014) by thresholding the computed NDVI layer within 

ArcGIS using the binary thresholding function. This function uses the Otsu (1979) 

method of creating two classes (a high value and a low value class) with minimal 
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interclass variance (originally intended to distinguish between background and 

foreground of a greyscale image). However, it tended to overestimate the vegetative 

cover, included shadows and covering small details such as gaps within the canopy 

(figure 4-17) which could reduce the detection of disease. 

 

 
Figure 4-17: Example plot vegetation at 75 DAP; (A) Classified vegetation using 
manually thesholded NDVI layer (green = vegetation, yellow = flowers, black = 
shadow); (B) addition of binary thresholded layer (red) showing extra extent of 
expected vegetation due to inclusion of shadows (between rows) and dying potato 
plants (intra row). 
 
It was also unable to generate a satisfactory threshold for the first sensing date (28 

DAP), probably due to the fact that there was not enough vegetation present to form 

a significant second peak (bimodality) within the grey-level histogram of the NDVI 

layer (figure 4-18). The use of a more complex model for the vegetation thresholding 

could well remove the need for it to be set manually, as a study by Torres-Sánchez 

et al. (2015) indicated a high level of accuracy with minimal computation using an 

OBIA approach against aerial imagery of maize, sunflower and wheat crops. 
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Figure 4-18: Histograms of the NDVI layer; (A) 28 DAP, no significant second peak 
can be seen; (B) 62 DAP, a significant second peak can be seen, allowing binary 
thresholding.  

 

4.9.3 Pixel and object-based approaches 
Previous studies of trials for disease detection often use pixel-based approaches to 

map the spread of disease within each plot (Zhang et al., 2017; Brodbeck et al., 

2017; Nebiker et al., 2016; Sugiura et al., 2016), however an OBIA based method 

was used as its ability to segment and classify an image (based on shape, size, 

texture and spectral properties), is more appropriate for the high-resolution imagery 

captured by UAS (Blaschke, 2010; Kelcey &Lucieer, 2013). In this study the full 

power of the OBIA software was not used (no multi-resolution segmentation) as the 

imagery was essentially just thresholded, however errors were observed with the 

detection of some flowers. As the OBIA classification was primarily based on a 

manually derived NDVI threshold, its classification accuracy was only visually 

assessed and has not been directly verified within this study, but improvements to 

its classification of potato flowers could have reduced a small amount of false 

negative results, as misclassification of some flowers led to “holes” appearing within 

the potato vegetation canopy (figure 4-19).  
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Figure 4-19: Part of the trial at 75 DAP when flowering was very visible; (A) visual 
layer highlighting flowers; (B) visual layer with classification overlaid (green = 
vegetation, yellow = flowers), misclassified flowers are highlighted. 
 
OBIA could also have been used for emergence detection, however as weed control 

of the trial had been effective, a simple and far quicker pixel based NDVI 

thresholding method was preferred at that stage, especially as the OBIA software 

available (InterImage) had limitations on the size of imagery it can process (Clewley 

et al., 2014), meaning that each plot had to be processed independently (a 

considerably slower processing method).  

 

4.9.4 Delineating plant growth space 
As the aim of this study was to identify and map diseased plants through changes in 

their canopy structure, a way of delineating and monitoring each individual plant was 

required. The concept of creating growth spaces for each plant (the pROI) seemed 

logical and was implemented using Thiessen polygons generated from the plant 

emergence points. Thiessen polygons are created around a set of points by dividing 

a given space and allocating it to the nearest point, so that any location within a 

Thiessen polygon is closer to the point it was allocated to, rather than any other 

point within the set (Yamada, 2016). As these pROI were created once the 

emergence points of all the plants were known (by 52 DAP), delays caused by late 

emerging plants would delay the disease detection process, potentially missing 

diseased plants at earlier stages of development, so ideally a model that combined 
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the detection of emerged plants and monitoring of them for disease from that point 

of detection needs to be identified. 

 
The use of Thiessen polygons to delineate the pROI may not be the best method as 

not all of the plant points were perfectly spaced, leading to disparity in the size and 

shape of each allocated pROI (figure 4-20a). They are also not necessarily 

representative of the natural growth of the plants, which are unhindered by fixed 

boundaries, only by competition with their neighbours and resource availability 

(figure 4-20b). This would have attributed to some of the missed and false positive 

results, and because of the disparity in size of different pROI, changes to the 

percentage of canopy growth within each pROI was used as a measure of disease 

detection rather than the area or percentage of canopy within each pROI.  

 

 
Figure 4-20: (A) Part of trial at 39 DAP, variations in size and of pROI (red 
polygons) can be seen due to estimate plant positions (red dots) with the end of 
rows having more space due to no competition with the 60 cm buffer used; (B) the 
same part of trial at 47 DAP, intra-row canopy closure is occurring for some plants 
(highlighted) and so can now only be differentiated by using the hard border of the 
pROI. 

 
As these pROI were fixed based on the emergence results, further issues were 

encountered relating to the georeferencing of orthomosiac imagery between survey 

dates as slight differences in position were observed, most likely due to the 

accuracy of the equipment used to survey the GCPs. Although small, a drift of a few 

cm between survey dates would have influenced the results, so the use of higher 

accuracy GNSS (e.g. accuracy < 2 cm) to mark the GCPs would likely have 

A B 



  

123 
 

improved the results. This would also have improved height data processing as 

Bendig et al. (2013) showed effective identification of the height of crops through the 

use of a pre-emergence DTM, however this method could not be followed due to the 

variance in slope identified when initially processing the height data. 

 

4.9.5 Automatic and manual disease detection 
When thinking of how disease such as blackleg affects a potato plant (primarily 

wilting, stunting and canopy dieback), the main expectations leading into the study 

was that canopy discolouration and a reduction in canopy ground cover would be 

the primary indicators. Visual assessment of the imagery using the MANdisease 

method was based on these expectations and was relatively straight forward to 

implement, as the high resolution of the imagery and ability to quickly view current 

and previous images (in both true and false colour) enabled the assessor to make 

fast judgements. The assessor would likely improve in both speed and accuracy as 

they became more experienced, although this would become a tedious task over a 

much larger number of plots. The results showed a high level of accuracy with no 

false positive results and an excellent level of agreement with GROUNDdisease (OA 

95 %, PA 82%, UA 100% and Ǩ 0.87). However, not all cases of disease were 

identified, which can be attributed to missing some cases of canopy discolouration 

and the fact that only effects to the top of the canopy (loss or discolouration) can be 

seen from the aerial viewpoint and diseases such as blackleg often show effects on 

the stems first (basal stem rot, giving the plant its ‘blackleg’), with the disease 

becoming apparent within the canopy later (Czajkowski et al. 2011). 

 
The AUTOdisease2 method relied on thresholded NDVI values to indicate changes in 

canopy ground cover and canopy discolouration, as discoloured canopy would give 

lower NDVI values and therefore not be classed as potato vegetation. It could also 

make more use of the height and volume data, both of which are not as easy to 

visualise compared to normal imagery and so were not used by MANdisease. Initial 

work using fixed values as thresholds for measures such as canopy ground cover 

growth gave poor results (Gibson-Poole et al., 2017), so allowing the thresholds to 

become variable and based on the growth of the entire potato plant population being 

surveyed was the next logical step. This concept is acceptable if all factors affecting 

the plants are expected to be the same for each plant (e.g. availability of water and 

nutrients), as this should result in a relatively uniform pattern of plant development. 

For this small trial it was expected that this would be the case, but for larger 
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commercial fields changes to the model may be required to account for in field 

variability in factors such as soil type and pH, both of which might affect the 

development rate of plants (Redulla et al., 2002). 

 
To make the threshold for each measure variable, the standard deviation of the 

plant population mean of each measure was used to identify plants that were either 

growing at a slower rate or loosing parts of their canopy. However, even for this 

small trial there were relatively large differences in canopy ground cover growth rate 

between plants as the plants emerged at slightly different times and so were 

exhibiting different rates of growth at each sensing date. Large established plants 

could also completely die back in between sensing dates (especially towards the 

later dates), which would result in large deviations of the mean within the population 

as a whole. To reduce this deviation an initial selection of plants is made using the 

pGROWTH measure to identify plants that exhibited a considerably reduced (or 

negative) canopy ground cover growth rate compared to the mean plant population. 

 
The 1st pGROWTH

THRESHOLD for this initial selection could be altered by changing the 

multiplication factor applied to pGROWTH
STD. This multiplication factor was 

experimented with but a value of 1.5 produced the most correct detections with 

minimal incorrect detections, whereas decreasing it towards 1 would result in more 

correct and incorrect detections, whilst increasing it towards 2 would result in less 

correct and incorrect detections. A multiplication factor of 1.7 resulted in no incorrect 

detections, so could potentially be used for applications that required accurate 

detection of only diseased plants, although fewer diseased plants would be 

identified overall. 

 
The second measure used in the first part of workflow (eCOVER) looked specifically at 

the canopy cover within the eROI of each plant as this was expected to always be 

100% unless the plant was losing canopy due to disease. This was the only 

threshold that used a fixed value but would only be enacted if the eCOVER percentage 

of the current sensing date was lower than the eCOVER percentage from the previous 

sensing date. Within the model the eCOVER threshold could also be altered and so 

was experimented with to find an optimum value. Setting it to the ideal value of 100 

% proved too sensitive and gave more incorrect results due to a combination of 

imperfect positioning of the eROI and slight shifts in orthomosaic georectification, as 

well as the misclassification of some flowers. Lowering the threshold to 97 % gave 
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some allowance for this whilst still enabling it to be a useful measure for disease 

detection, especially where neighbouring plants had encroached into the pROI of the 

diseased plant (figure 4-21). 

 

 
Figure 4-21: (A) part of the trial at 67 DAP, showing eCOVER areas generally at 100 % 
(orange circles); (B) the same section of the trial at 75 DAP, the central plant has 
lost canopy but was not detected by the pGROWTH measure. Its eCOVER is greatly 
reduce (highlighted) allowing detection. 
 
Both the pGROWTH and eCOVER measures relied solely on the spectral element of the 

data and combined made up ~75% of total detections, so even if height data was 

not available then these measures alone would give an indication of disease 

pressure within the plant population. However, as height data was available it could 

be used to try and identify further cases of disease that were not easily picked up 

through canopy loss or discolouration. Due to the variability in plant development 

and growth, a subset of plants that showed lower growth than the population as a 

whole had to be used before interrogating each plants height and volume, otherwise 

later emerging plants would always be indicated as diseased, simply because they 

are smaller than earlier emerging and more mature plants. 

 
Therefore, a 2nd pGROWTH

THRESHOLD was used in order to select a subset of slower 

growing plants from the remaining (i.e. not already marked as diseased) population 

of plants, again using a multiplication factor for pGROWTH
MEAN. Experimentation 

revealed that a factor of 1.2 gave the best balance between correct and incorrect 

detections and appeared to be consistent no matter what 1st pGROWTH
THRESHOLD value 
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had been used. Decreasing it towards 1 would add too many plants to the subset, 

leading to more incorrect detections using the height measures, whereas increasing 

it towards 1.3 would result in too few plants being added to the subset and therefore 

fewer correct detections. 

 
To select potentially diseased plants from the subset of slow growing plants, first the 

mean volume and standard deviation of all the plants in the subset was identified 

and used to create a threshold for the pVOLUME measure (fixed at the mean volume 

minus one standard deviation). This produced a more correct detections at earlier 

sensing dates (62 and 67 DAP), with no incorrect results until 75 DAP. The reason 

for these incorrect results is unclear, but as the plants were more mature by this 

stage the already observed shifts in orthomosaic georectification between survey 

dates could have more influence with this measure, especially if neighbouring plants 

dying back had part of their canopy within the pROI being measured. This does 

indicate that volume measurements are potentially less reliable once the plants have 

matured and canopy closure (within and between rows) has occurred, simply 

because it is difficult to isolate one plant from its neighbours. 

 
The final measure used within the subset looked at the mean height within the eROI 

of each plant as this should be less influenced by incursions from neighbouring 

plants. The grand mean and standard deviation of eROI height for the subset 

population was identified and used to create a threshold for the eHEIGHT measure 

(fixed at the grand mean height minus one standard deviation). This detected only a 

few correct diseased plants for each survey date until 75 DAP, where it then 

detected a higher number. This can also be attributed to the fact that the plants were 

more mature at this stage and canopy closure had occurred, so this measure 

became more important in identifying diseased plants whose pROI had been 

encroached on by neighbouring plants. 

 
Although the difference between MANdisease and AUTOdisease2 was small in relation to 

the number of correctly identified diseased plants detected (84 and 85 respectively 

by 85 DAP), there was some discrepancy between the methods. They both 

identified 79 out of a possible 98 diseased plants (by 85 DAP), so out of each 

methods total valid detections, a few plants were only detect by one method or the 

other (5 only for MANdisease and only 6 for AUTOdisease2). When looking at just the 79 

valid cases that both methods detected, we can also see that AUTOdisease2 tended to 
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detect diseased plants slightly earlier than MANdisease, especially at the earlier 

sensing dates (52 and 62 DAP) showing a potential advantage using this method 

(figure 4-22). More ground truth surveys would be required in order to identify if 

AUTOdisease2 could detect disease earlier than from an actual visual inspection of the 

crop, but it is possible that modelling the growth of plants in detail could allow enable 

this. 

 

 
Figure 4-22: Total number of valid diseased plants detect by both 
methods up to 85 DAP. 

 

4.9.6 Potential application 
The primary application of a model such as this is to be able to produce maps of 

disease that could be used by government inspectors to identify the amount of 

disease in a crop, or by farmers to provide a map of the locations of disease (figure 

4-23) to allow a more targeted response (i.e. only sending in roguers to areas that 

have known disease), thus minimising any damage to the canopy by unnecessarily 

walking through it. This spatial distribution of disease within a crop could also show 

the vectors of infection, as linear patterns could indicate contaminated equipment, 

whereas scatter cases or ‘blanket’ infection over a large number of plants could 

indicate an aerial source of dispersion (Skelsey et al. 2016). 
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Figure 4-23: (A) Spatial distribution of disease by 75 DAP according to 
GROUNDdisease; (B) Spatial distribution of disease by 85 DAP according to 
AUTOdisease2. 
 

4.9.7 Limitations 

4.9.7.1 Senescence 
One element of the growing cycle of potatoes was not specifically covered within 

this study, that of senescence. As the crop was burned down (haulm destruction) 

before reaching this stage (in preparation for the Potatoes in Practise event) its 

effects on the AUTOdisease2 model cannot be identified. As plants start to naturally die 

back at this stage, it is quite possible that the model will generate lots of false 

positive results, unless all the plants started to senesce at the same time. The mean 

volume of all of the known “healthy” plants (i.e. the 287 not indicated as diseased by 

GROUNDdisease) was still showing signs of increase at 85 DAP (figure 4-24a) 

although the mean height was reducing (figure 4-24b) and growth had slowed 

(figure 4-24c), but from this it is difficult to conclude that senesce had begun. 

Spectral data would most likely be needed to give a better indication of senesce as 

for instance NDVI values are a good indicator (Bărăscu et al., 2016; Islam et al., 

2008), however a drop in mean plant NDVI was also not apparent (figure 4-24d). 
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Figure 4-24: Mean pVOLUME (A), eHEIGHT (B), pGROWTH (C) and NDVI (D) values for the 
“healthy” plant population (the 287 plants not indicated as diseased by 
GROUNDdisease). Note that by 85 DAP more cases of diseased plants are likely to 
have been apparent, hence more deviation of the mean.  
 

4.9.7.2 GCP accuracy 
As the imagery produced for this project was very high resolution (GSD ~1cm per 

pixel), slight shifts in georeferenced position of the orthomosaic from one survey 

date to the next are not ideal, as essentially not all of the same plant is being 

measured for each survey date. The equipment used to survey the GCP should 

have had a horizontal accuracy of 2 cm and ~6 cm vertically (Swift Navigation, 

2017), however validation of this (chapter 3) revealed that not to be the case (8 cm 

horizontal, 3 cm vertical), most likely due to error introduced from the way the 

equipment was deployed. The change in georeferenced position between survey 

dates was checked (table 4-12) to identify the shift using the root mean square error 

(RMSE) and revealed that the horizontal difference was within the accuracy margin 

although vertical error was worse than expected (which could account for the issues 

encountered with the DSM when attempting to generate crop height models). 
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Table 4-12: Changes in orthomosaic position between one 
survey date and its successor (all in meters). 
 

DAP RMSE X RMSE Y RMSE XY RMSE Z 

28-34 0.044 0.022 0.050 0.094 

34-39 0.010 0.023 0.025 0.014 

39-47 0.011 0.025 0.037 0.044 

47-52 0.013 0.025 0.027 0.090 

52-62 0.018 0.019 0.023 0.022 

62-67 0.012 0.025 0.031 0.042 

67-75 0.012 0.017 0.021 0.028 

75-85 0.053 0.057 0.078 0.049 
 

 
These shifts in position will have had an effect on the results as the pROI and eROI 

were static, so not all of the same plant will have been measured every time (more 

so for the later sensing dates than the earlier due to the size of the plants). As this 

study was specifically trying to monitor the development of plants in situ, this level of 

positional accuracy was far from ideal but considerably better than if relying on the 

accuracy of the GPS onboard the UAS alone. Therefore, ideally very accurate GCP 

survey equipment should be used to try and minimise errors caused by positional 

shift between survey dates, but this in itself is a limiting factor as this equipment is 

expensive and not always easily available (hence why the Piksi was used for this 

purpose). 

 

4.9.7.3 Weather & survey effort 
Weather limitations are an issue when using UAS as they are generally not 

waterproof and work best when wind speeds are light. Throughout this study the 

weather did dictate when data could be collected and although regular 

(approximately weekly) data collections did occur, they were not necessarily at the 

optimum time of day. Ideally remotely sensed imagery should be captured within two 

hours of solar noon and under cloudy conditions to minimise the generation of 

shadows and provide stable ambient light (Rasmussen et al. 2016). This was 

however not always possible simply due to the environmental conditions at the time 

when data needed to be collected (it was better to have data under sub-optimal 

conditions than have no data at all). 
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This leads onto the other main limitation of the AUTOdisease2 model, in that for it to be 

effective, regular surveys must be carried out (ideally every week) so that the 

progress of plant development can be followed. If the time between datasets is too 

long, emergence counts could be disrupted due to intra-row canopy closure, or 

diseased plants could be missed simply because neighbouring plants extended their 

canopy into the space left by the diseased plant. This is potentially quite a high 

survey effort so may not be practical and adds risk to using the model, for if data 

capture is delayed, the model may give poor results. 

 
Capturing the aerial data for this trial took less than 5 minutes of actual flying, but 

with aircraft setup and layout of ground control points, at least 30 minutes was 

required. Processing the data (orthomosaic generation and analysis) also took time 

(~2 hours per dataset), however much of the processing did not require continuous 

human interaction and with further automation (and the use of faster classification 

software) could be discounted almost entirely. One area that would significantly 

reduce collection and processing times would be to not use GCPs, although for this 

study they were required to ensure effective georectification of imagery between 

survey dates. 

 
As this trial was very small, manual assessment of the trial was comparatively quick 

compared to the aerial survey (<30 minutes in total), however over larger areas of 

several ha the amount of time required increase significantly. For instance, potato 

inspectors typically work in pairs and don’t physically inspect the entire area of crop 

being reviewed, but inspect sections using a zig zag pattern across the field. For a 

10 ha field they would physically inspect ~0.2 ha, which would take them at best 30 

minutes if no or limited signs of disease are found, but this would increase 

significantly if more signs of disease are seen (as closer inspection would be 

required) or if the size of the crop makes it more difficult to walk through (Ellicott, 

2019). 

 
Further to this the time required for roguing fields (which is typically done twice, 

before each inspection) is even longer. Depending on the level of disease found 

within a field, on average a team of 15 people would take ~3.5 hours per ha, as they 

have to inspect each plant and where disease is found, remove the effected plants 

and any tubers. Even where disease presence is low, ~1.75 hours per ha is required 

just to inspect each plant (Fleming, 2019).  
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Therefore, the use of a UAS to monitor fields weekly and provide disease maps 

could reduce the time required for roguing, as they could target their efforts into 

areas known to have issues. Likewise, as the potato inspectors only physically 

inspect sections of the field, the use of a UAS would help widen their survey, again 

allowing more targeted inspections into highlighted problem areas.  

 

4.10 Conclusions and future thoughts 
Modelling and mapping the development of individual potato plants to this level of 

detail has not been shown within another study to date (to the authors knowledge). 

This study has successfully shown that the onset of disease within a potato crop can 

be identified via interrogation of the change in plant structure using a UAS equipped 

COTS cameras. The level of accuracy is however subjective, for if the 3.9% error 

rate (false positive detections / plant population) of AUTOdisease2 were scaled linearly 

to a more typical commercial crop plant density of 40,000 plants per ha, then there 

could potentially be 1560 false positive results per ha. This may well not be accurate 

enough for real world use, so improvements indicated in the discussion will need to 

be made. 

 
The main omission is the use of spectral data to help narrow down cases of 

potential disease. Ideally the use of calibrated multispectral sensors such as the 

MicaSense RedEdge (MicaSense Inc, Seattle, USA) would provide high quality 

spectral data to assist with this, as they have been used successfully to detect 

disease in rice (Zhang et al., 2017) forests (Dash et al., 2017) and grapevines 

(Albetis et al., 2017). However, sensors such as these are considerably more 

expensive than the COTS cameras used in this study. Another aspect that could 

reduce the error rate and help reduce the time taken for data collection would be the 

application of direct georeferencing from GNSS receivers on board the UAS. If 

accurate enough (ideally to a few cm), this would potentially negate the need for 

GCP thereby speeding up image capture and image processing. However, this too 

would require the use of more expensive GNSS receivers, but other studies have 

shown that accuracy of a few cm can be achieved by pursuing this technique 

(Turner et al., 2014; Harder et al., 2016). 

 
This chapter meets part of the 4th objective for this PhD project, in showing that 

structural plant growth parameters can be interrogated overtime and that this can be 
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used to as a method of detecting disease. Although this study only investigated 

potatoes, the use of structural data could be applied to a variety of trial crops, as 

well as to aid in the classification of other microtopographical features (e.g. different 

levels of native vegetation, such as trees, shrubs and grasses). It also adds to the 

evidence for the 3rd objective, in that it demonstrates the utility of both pixel and 

object-based image analysis to aid in the separation of plant material from soil, 

although the use of OBIA techniques in this chapter was fairly limited due to the 

limitations of the software package used. 
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Chapter 5. Agricultural applications - Comparison of 
aerial and ground-based methods for 
analysis of a trial crop of potatoes 

 

5.1 Introduction 
Agricultural trials are used for a variety of different purposes, with the primary aim 

being the identification of the development and potential yield of crops when within 

field like conditions and not in the controlled environments of laboratories or 

greenhouses (Sankaran et al., 2015). However, collection of data from the ground 

can be laborious if there are many plots to process, or specific measures (such as 

crop height) are required (Sankaran et al., 2015; Holman et al., 2016). Field trials 

are required to evaluate new varieties of crops, in terms of their resistance to certain 

types of disease or response to environmental conditions (often termed high 

throughput phenotyping) and due to their flexibility of deployment, range of possible 

sensors and relatively low price, UAS are likely to become indispensable tools to 

support this activity (Chapman et al., 2014; Haghighattalab et al., 2016; Shakoor et 

al., 2017). 

 
Ground based assessed agronomy field trials are used to evaluate established 

varieties typically grown by farmers, covering all aspects of crop production (growth 

regulation, tillage, establishment, varieties, weed control, pest and disease control), 

which can be disseminated and fed back directly to farmers to help them manage 

the day to day development of their crops. For instance, Havis et al. (2014) 

conducted ground-based assessment of field trials over three years to identify 

varietal resistance of barley to the fungal pathogen Rhynchosporium commune 

(which can result in yield losses up to 40%), as well as inform on the effective timing 

application of targeted fungicides to combat its development. UAS have already 

been used to help monitor field trials investigating the resistance of crops to disease 

(Sugiura et al., 2016) and tolerance to environmental conditions such as water 

stress (Kyratzis et al., 2014), hard winters (Khot et al., 2015) or damage caused by 

more extreme weather such as hail (Zhou et al., 2016), so the application of UAS to 

aid in the monitoring of agronomy trials could enable more aspects of plant 

development to be captured and thus provide more informed feedback to farmers. 

 
This chapter addresses the 3rd and 4th objectives of this PhD project as it explores 

the use of a UAS as an analysis tool to identify if it can produce results that are 
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comparable to that of traditional ground-based trials analysis. An experiment was 

carried out with colleagues from Scotland’s Rural College (Brian Fenton and Roger 

Griffin-Walker), to monitor the emergence and canopy ground cover of a trial crop of 

potatoes, which became somewhat overrun with weeds partway through the trial.  A 

paper detailing summary results of the manual and automatic analysis (Gibson-

Poole et al., 2018) was submitted and presented at the Crop Protection in Northern 

Britain conference in Dundee, UK (February 2018) and can be seen in appendix D. 

The rest of this chapter is an expansion of the summary paper, detailing the 

methods used for the comparison and explaining the issues encountered. 

 

5.2 Aim of the case study 
The aim of this case study is to identify if a UAS equipped with COTS cameras is 

able to detect the emergence and change in canopy cover of potato plants to the 

same fidelity as that of traditional ground-based techniques. 

 
The aerial data collected for this study was of a series of trials investigating the 

effects of different treatments in a field system containing a high egg load of potato 

cyst nematodes (PCN). There are two species of PCN, Globodera pallida and 

Globodera rostochiensis, and exposure of potato plants to them results in reduced 

root growth, leading to a reduction in water uptake (plants become water stressed) 

as well as a reduction in key nutrients such as nitrogen, phosphorus and potassium 

(Ryan et al., 2000). However, as the results of this trial were commercially sensitive, 

and the trial was disrupted due to the high level of weeds present, this study looks 

specifically at the differences between ground based and aerial based observations 

and the actual treatments and differences in their effectiveness are not directly 

reported on. 

 

5.3 Materials and Methods 

5.3.1 Trial layout 
The trial plots used for this experiment were located to the east of Dundee, 

Scotland. The trial was composed of 48 plots, containing two beds (four rows in 

total, the outside two being guard rows) with 21 tubers per row (figure 5-1). All of the 

plots were planted on the 11/05/2016 and split into two varieties, 24 of Harmony and 

24 of Maris Piper. Tubers were planted using a customised planter with an expected 

spacing of 25 cm and a drill width of 0.865 m. 
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Figure 5-1: Overview of trial plot layout with detail insert of a single plot highlighting 
guard rows (red arrows). 
 

5.3.2 Ground data collection 
Two sets of manual data were acquired by an experienced observer, using standard 

techniques to record potato development (SRUC, 2017a; SRUC, 2017b). 

Emergence counts were conducted at 19, 23, 30, 33 and 37 days after planting 

(DAP), with emerged plants being estimated by grouping closely located emerged 

shoots (GROUNDemerge). Only the central two rows of each plot were counted (guard 

rows were ignored; figure 5-1), added together and if equalling 21 or higher, then the 

50% emergence date would be set for that plot. Ground cover assessments were 

conducted at 54, 61 and 89 DAP (GROUNDcover) with percentage of potato leaf 

ground cover being estimated using a hand-held grid of 100 equal sized squares to 

view the central two rows (aligned to the trough-centres on outside of the rows), 

whilst ignoring the row-end plants (figure 5-2). 

 

  
Figure 5-2: (A) Example of the hand-held grid square used for manual identification 
of canopy cover; (B) Example of grid square in use to monitor a plot (the two central 
rows, dashed red box), guard rows are indicated (red arrows). 

A B 
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5.3.3 Aerial data collection 
Aerial data was acquired using two different aircraft and two different sets of 

sensors, with data acquired at 16, 22, 27, 33, 41, 46, 54, 61, 69 and 79 DAP, at 

varying times of the day and with varying environmental conditions (table 5-1). Nine 

sets of data were collected (by the author) using the custom-built multi-rotor UAS 

and sensor package as indicated in chapter 3 (UAS1). The data acquired at 54 DAP 

was collected (by the trials team) using a 3D Robotics Solo (3D Robotics, Berkeley, 

CA, USA) quadcopter UAS (UAS2) equipped with a single, fixed mount Canon ELPH 

115 IS (Canon, Tokyo, Japan) capturing true colour imagery in JPEG format (ISO, 

white balance and aperture all set to automatic, exposure set to 1/1000 second). 

 
Both UAS used pre-programmed automatic flights at 35 m above ground level to 

capture imagery with a GSD of ~1 cm per pixel, at a speed of 2 m/s and with an 

expected forward image overlap of 62% and side overlap of 87% for UAS1 but only 

~60/60% overlap UAS2. The reduced overlap achieved from UAS2 was due to 

inexperience of the trials team UAS operator, as its camera was set to take a picture 

every 2 seconds, but the aircrafts cruise speed was set too high (5 m/s) to allow for 

the intended 80% forward image overlap. Georectification of imagery was assisted 

by the placement of eleven GCPs surveyed using a Piksi (Swift Navigation, San 

Francisco, USA) real-time kinematic GPS with an expected accuracy of ±8 cm. 

 
Table 5-1: Time each survey conducted, and 
environmental conditions encountered. 
 

DAP Time Conditions 
16 18:00 Overcast 
22 12:00 Cloudy/sunny 
27 11:30 Sunny 
33 17:00 Overcast 
41 13:00 Overcast 
46 13:00 Cloud/sunny 
54 12:30 Light cloud 
61 12:30 Cloudy/sunny 
69 12:00 Sunny 
79 15:30 Overcast 

 

 

5.3.4 Image processing 
Image pre-processing was carried out as indicated in chapter 3 (including 

normalisation) for all the imagery captured by UAS1. Imagery captured by UAS2 did 

not undergo any pre-processing (except geotagging) as only JPEG format data was 
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available. All datasets were then processed using Agisoft Photoscan (v1.2.5; Agisoft 

LLC, St. Petersburg, Russia), using high settings (image alignment highest; dense 

cloud high quality; depth filtering mild) and optimised using the 11 GCPs placed 

around the trial plots (using an estimated accuracy of 0.15 m). 

 

5.3.5 Orthomosaic co-registration 
As was experienced in chapter 4, issues were encountered when attempting to co-

register the linear orthomosaic data from the unmodified and modified cameras of 

UAS1. Attempts were made to remedy this by using ArcGIS (v10; ESRI, Redlands, 

USA) to georeference the linear orthomosaic from the modified camera to that of the 

unmodified camera, however the results were not satisfactory across all of the plots 

(possibly due to the long and thin nature of the trial). This would have caused issues 

when attempting to identify emergence at the earliest stages, as some very small 

plants were unlikely get detected (they only consisted of a few pixels each). 

Therefore, attempts at co-registration were abandoned (left as per initial processing) 

and the layers were combined into a 5 band orthomosaic for future processing (the 

green channel from the modified camera was omitted to reduce image size as it was 

not going to be used). As only true colour imagery was available for UAS2, no co-

registration was required. 

 

5.3.6 Emergence and plant count analysis method 

5.3.6.1 Automatic methods 
Two automatic methods of identifying plant emergence were attempted, and both 

followed the same methodology indicated in chapter 4 for the initial thresholding of 

vegetation. However, there was one divergence from this method as the NDVI layer 

was created from the red and blue channels of the modified camera using the 

formula in eq. 5-1, rather than the red channel from the unmodified and blue channel 

from the modified. This was done due to the issues encountered when attempting to 

co-register the orthomosaic data from the modified and unmodified camera. This 

solution was not ideal as all channels of the modified camera capture NIR 

wavelengths; however, this produced a satisfactory result that was enough to enable 

the manual thresholding of the scene into vegetation and soil. 
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𝑁𝐷𝑉𝐼 =
𝐷𝑁𝑁𝐼𝑅 − 𝐷𝑁𝑅+𝑁𝐼𝑅

𝐷𝑁𝑁𝐼𝑅 + 𝐷𝑁𝑅+𝑁𝐼𝑅
 (5-1) 

 
Where 𝐷𝑁𝑁𝐼𝑅 refers to the DN of the blue channel of the modified camera and 
𝐷𝑁𝑅+𝑁𝐼𝑅  refers to the DN of the red channel of the modified camera. 
 
As the emergence was still occurring by 54 DAP, the data captured by UAS2 also 

needed to be separated into vegetation and soil and as the data was true colour 

only, the vegetation was threshold manually by using the excess green minus 

excess red index (ExGR; eq. 5-2) in a similar manner to Meyer & Neto (2008). 

 

𝐸𝑥𝐺𝑅 = (2 ⋅ 𝐷𝑁𝐺 − 𝐷𝑁𝑅 − 𝐷𝑁𝐵) − (1.4 ⋅ 𝐷𝑁𝑅 − 𝐷𝑁𝐺) (5-2) 

 
Where 𝐷𝑁𝐺 refers to the DN of the green channel of the unmodified camera, 𝐷𝑁𝑅  

refers to the DN of the red channel of the unmodified camera and 𝐷𝑁𝐵 refers to 
the DN of the blue channel of the unmodified camera. 
 
The first automatic method for emergence counting (AUTOemerge

1) followed the 

methodology indicated in chapter 4 to first detect emergence points and then create 

amalgamated plant points. After checking the initial results from AUTOemerge
1, it was 

clear that estimates of emergence were below what was expected. This was due to 

the closer and less consistent plant spacing used within this trial and the much 

higher prevalence of weeds, so the model used for AUTOemerge
1 was modified in an 

attempt to make it more robust to these conditions. 

 
This second automatic method for emergence counting (AUTOemerge

2) detected 

actual emergence points in a manner very similar to AUTOemerge
1 (figure 5-3a), 

however it attempted to compensate for the more irregular planting of the tubers by 

‘snapping’ each emergence point detected to the central line of each plot, in order to 

identify plant points for each set of closely situated emergence points (figure 5-3b). 
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Figure 5-3: ArcGIS models (blue are inputs; green are outputs; yellow are 
functions); (A) AUTOemerge

2 model for emergence point detection; (B) AUTOemerge
2 

model for plant point identification. 
 
  

A 

B 
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Each emergence point detected (figure 5-4a) was first aligned with the centre line of 

the plot and any points within 7 cm of each other were amalgamated into a single 

central point (figure 5-4b). A 10 cm plant spacing buffer was then applied to the 

plant points before processing the next sensing date, with any newly detected 

emergence points being ignored if they were within the plant spacing buffer after 

alignment with the centre line (figure 5-4c). This process would be continued for 

each sensing date (figure 5-4d & 5-4e) until no more emergence points were 

detected. 

 

     
Figure 5-4: (A) Row development at 22 DAP showing emergence points (green 
dots) and row centre line (black dash); (B) row at 22 DAP showing amalgamated 
plant points snapped to centre line (red dots); (C) row at 27 DAP showing 
emergence points (blue dots), plant spacing buffer (orange polygons) and 
amalgamated plant points (red dots). Ignored emergence points are highlighted (red 
arrow); (D) row at 33 DAP showing emergence points (pink dots) and amalgamated 
plant points (red dots); (E) row at 41 DAP showing last emergence point (yellow dot) 
and final amalgamated plant points for the row (red dots). 
 

A B C D E 
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5.3.6.2 Manual emergence method 
Five plots from each variety were also randomly selected for direct visual analysis 

(MANemerge) of the aerial imagery. The experienced observer stepped through the 

visual imagery of each survey date in turn and counted what they believed were 

emerged plants per date. They could look backwards but not forwards in time from 

the date they were currently assessing. 

 

5.3.7 Canopy cover analysis method 
As two of the survey dates had crossover of both aerial and ground data collection, 

the aerial data at 54 DAP (AUTOcover
54; originating from the unmodified camera of 

UAS2), and 61 DAP (AUTOcover
61; originating from the unmodified and modified 

cameras of UAS1), were both classified using the object-based image analysis 

(OBIA) software eCognition Developer (v9.2.1; Trimble, Munich, Germany). Different 

classifications approaches were taken due to the different sensors available for each 

date, resulting in the orthomosaic data being classified into five potential classes; 

potato, potato flowers, weeds, shadow and soil.  

5.3.7.1 Plant height 
Height is not usually a metric that is captured for potato trials analysis, although 

measures of vigour (an estimation of the growth of the plant including its height) are 

sometimes taken if necessary. However, as this measure could be of benefit to trials 

analysis a pre-emergence orthomosaic and DSM was captured at 16 DAP with the 

intention for it to serve as the base ground height to allow crop height models to be 

created in the same fashion as Bendig et al. (2013). However, as with chapter 4, 

similar issues were encountered that made this method unusable, so an alternative 

was devised. The vegetation polygons that were created as part of the emergence 

process for each sensing date were buffered by 5 cm (to avoid any edge effects 

from the vegetation) and used to create a ground polygon layer. 100,000 points 

(with a minimum distance of 2 cm between each point) were randomly generated 

within this polygon, assigned with an elevation value from the corresponding DSM 

and used to create an interpolated DTM layer. A crop height model could then be 

created (DSM-DTM) and although this will have some inaccuracies, it would still give 

an estimation of height for each sensing date. 

 

5.3.7.2 Initial segmentation of data 
Rather than classify each row independently (as occurred in chapter 4), the data for 

both sensing dates was segmented into plots first to enable processing against only 
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those areas (plots were defined by buffering the centre line of each row by 0.43 m, 

the distance between two rows). Separate classification methods were then 

employed to classify the data from 54 and 61 DAP, as the data originated from 

different sensors. 

 

5.3.7.3 Classification of true colour orthomosaic at 54 DAP (AUTOcover
54) 

At 54 DAP weeds were apparent between the rows of potatoes, with some 

occurrence of weeds within each row but no flowers or shadows were present. A 

process workflow was created within eCognition (figure 5-5) that initially used a 

chessboard segmentation to segment each plot, using the soil polygons created for 

the emergence process as constraining features. A large object size was used to 

ensure that the segmented scene resulted in objects that represented the manual 

thresholding carried out as part of the emergence process. Vegetation was then 

classified as objects that had a mean ExGR value >= 50 and were within 15 cm of 

each row centre line. Any unclassified objects remaining at this stage were either 

classified as soil (ExGR < 50) or weeds (ExGR >= 50). 

 

 
Figure 5-5: eCognition process workflow used to classify 
potatoes, weeds and soil at 54 DAP. 

 
As the vegetation class objects contained both potatoes and some weeds, a 

multiresolution segmentation was used to split the vegetation into more discrete 

objects (scale 50, shape 0.1, compactness 0.5). These discrete objects had classes 
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assigned using several steps, with an initial classification as potato if the objects 

were within 3 cm of the row centre line or had a mean height of at least 0.2 m (at 

this sensing date the potato plants were taller than the weeds). Any remaining 

objects that were completely encompassed by potato vegetation were then also 

classed as potato (small areas of the internal canopy that were slightly shadowed). 

The remaining vegetation polygons were all classed as weeds, before the potato 

and weeds classes were merged (independently) and exported for further analysis. 

 

5.3.7.4 Classification of 5 band orthomosaic at 61 DAP (AUTOcover
61) 

By 61 DAP weeds were well established between and within each row, making 

classification considerably more difficult. A process workflow was created within 

eCognition (figure 5-6) that also used an initial chessboard segmentation to segment 

each plot, using the soil polygons created for the emergence process as 

constraining features. Vegetation was then classified as objects that had mean 

NDVI value >= 0.36 and were within at least 15 cm of each row centre line or had a 

mean height >= 0.22 m with a mean NDVI value of >= 0.44 (the latter was to 

account for some rows of particularly large plants whose canopies had become 

joined across rows, resulting in their object centres being the centre of the trough 

between the rows). Any unclassified objects remaining at this stage were either 

classified as soil (NDVI < 0.36) or weeds (NDVI >= 0.36). 

 
The vegetation class objects contained both potatoes and a considerable number of 

weeds (that were around the edge and within the canopy of the potato plants), 

therefore a multiresolution segmentation was used to split the vegetation class 

objects into a fine scale of discrete objects (scale 20, shape 0.8, compactness 0.5). 

Any object with a mean brightness <= 1000 was classified as shadows (brightness 

was defined as 
𝐷𝑁𝑅+𝐷𝑁𝐺+𝐷𝑁𝐵

3
 - where 𝐷𝑁𝐺 refers to the DN of the green channel 

of the unmodified camera, 𝐷𝑁𝑅  refers to the DN of the red channel of the 

unmodified camera and 𝐷𝑁𝐵 refers to the DN of the blue channel of the unmodified 

camera). Objects that had a brightness >= 8000, mean 𝐷𝑁𝐵 of >= 3000, ExGR <= 

1000 and NDVI >= 0.4 were classified as flowers. Any image object that had an 

NDVI >= 0.44 was then merged and classed as potato as this accounted for the 

larger healthy potato plants. Remaining vegetation class objects that had an NDVI 

<= 0.42 were then classed as weeds. 
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Figure 5-6: eCognition process workflow used to classify potatoes, 
flowers, weeds, shadow and soil at 61 DAP. 

 
At this point a significant number of vegetation class objects remained, so they were 

merged before identifying objects as potato if they shared a border with other potato 

class objects of at least 80%, or they shared a border with other potato class objects 
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of at least 60% along with at least 5% shared border with flower class objects (this 

accounted for the small areas of slightly shadowed potato vegetation that were 

within the main canopy of each row). The remaining vegetation class objects were 

re-segmented again using a coarser multiresolution segmentation (scale 50, shape 

0.1, compactness 0.8) before being classified as either potato or weeds based off of 

their membership function to an HSI (hue, saturation and intensity) transformation to 

saturation (figure 5-7; HSI saturation between 0.4~0.55). 

 

  
Figure 5-7: Membership functions for (A) Weeds class and (B) Potato class, using 
an HSI transformation to saturation. 
 
To complete the classification, each class of objects (except flowers) were merged 

(independently), before classifying potato or weeds class objects as flowers if they 

were completely encompassed by other flower class objects (this was to account for 

the occasional misclassification of the centre of a flower). The flower class objects 

were then merged before the entire classification was exported for further analysis. 

 

5.3.7.5 Identification of ground cover per row 
To enable the detection of ground cover for surveys conducted at 54 and 61 DAP, 

the same method employed in Gibson-Poole et al. (2017) (chapter 4) was used to 

segment each row using Thiessen polygons into plant regions of interest (pROI; 

bounded to a maximum of 0.43 m for rows around the edges of the trial). The area 

of each pROI was then identified along with the area of ground potato leaf ground 

cover, before then combined to give totals for each row, which was then used to 

generate a percentage of potato leaf ground cover per row. 
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5.4 Results 
For the emergence and ground cover results, statistical analysis was carried out 

using Microsoft Excel (Microsoft, Redmond, WA, USA) to calculate the Pearson 

correlation coefficients (r) and probability values (p). 

 

5.4.1 Emergence 
GROUNDemerge revealed that all Maris Piper plots had reached 50% emergence by 

23 DAP and all Harmony plots by 30 DAP. AUTOemerge
1 and AUTOemerge

2 reached the 

same level by 27 DAP and 41 DAP respectively. However, MANemerge reached 50 % 

emergence by 22 DAP for the Maris Piper plots and by 33 DAP for the Harmony 

plots. This indicates that the automatic methods may not be as sensitive as the 

manual method in detecting emergence (although MANemerge was looking at a 

smaller number of plots), but in general, GROUNDemerge detected more emerged 

plants earlier than any of the other methods and AUTOemerge
1 detected the least 

number of emerged plants overall (figure 5-8). 

 

  
Figure 5-8: (A) Mean emerged Maris Piper plants at DAP; (B) Mean emerged 
Harmony plants at DAP. 
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Both ground and aerial surveys were conducted at 33 DAP so direct comparisons 

could be made (table 5-2, figure 5-9). For the Maris Piper plots, the AUTOemerge
1 and 

AUTOemerge
2 methods showed a significant moderate correlation to GROUNDemerge 

whilst the MANemerge showed a significant strong correlation with GROUNDemerge. 

However, for all methods, no significant correlation was achieved for the later 

emerging Harmony plots. AUTOemerge
1, AUTOemerge

2 and MANemerge methods 

indicated that all plants had emerged by 54 DAP, however final plant counts were 

not recorded by GROUNDemerge so this could not be directly compared. 

 
Table 5-2: Correlation analysis between GROUNDemerge emerged plant counts and 
the three analysis methods at 33 DAP. Shows correlation per variety and a 
combination of both varieties (r correlation coefficient, s slope, i intercept, p p-value, 
n number of pairs, *Not significant at α = 0.05). 
 

Method Variety r s i n p 

 Maris Piper 0.43 0.18 ± 0.08 34.86 ± 3.02 24 0.0373 
AUTOemerge

1 Harmony 0.29* 0.09 ± 0.07 37.67 ± 1.56 24 0.1673 

 (Combined) 0.52 0.11 ± 0.02 37.31 ± 0.85 48 0.0002 

 Maris Piper 0.47 0.27 ± 0.11 30.72 ± 4.38 24 0.0215 
AUTOemerge

2 Harmony 0.29* 0.09 ± 0.06 37.70 ± 1.53 24 0.1621 

 (Combined) 0.52 0.10 ± 0.02 37.41 ± 0.83 48 0.0002 

 Maris Piper 0.94 0.63 ± 0.13 16.11 ± 5.16 5 0.0156 
MANemerge Harmony 0.07* -0.04 ± 0.33 39.31 ± 11.37 5 0.9147 

 (Combined) 0.50* 0.29 ± 0.18 28.95 ± 6.80 10 0.1436 
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Figure 5-9:  Maris Piper plant emergence correlation at 33 DAP between 
GROUNDemerge and (A) AUTOemerge

1; (C) AUTOemerge
2; (E) MANemerge; Harmony plant 

emergence correlation at 33 DAP between GROUNDemerge and (B) AUTOemerge
1; (D) 

AUTOemerge
2; (F) MANemerge.  

 

5.4.2 Ground cover 
Direct comparisons of potato leaf ground cover could be made for 54 and 61 DAP 

and for both sensing dates, GROUNDcover reported a larger percentage of potato leaf 

ground cover in general. However, AUTOcover
54 and AUTOcover

61 both showed a 

strong positive correlation for both varieties that were also highly significant (table 5-

3; figure 5-10). 
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Table 5-3: Correlation analysis results between GROUNDcover potato leaf ground 
cover and the two automatic analysis methods. Shows correlation per variety and 
a combination of both varieties (r correlation coefficient, s slope, i intercept, p p-
value, n number of pairs). 
 

Method Variety r i s n p 

 
Maris 
Piper 

0.81 
  12.64 ± 

7.09 
0.99 ± 
0.15 

24 < 0.0001 

AUTOcover
54 Harmony 0.75 

  12.59 ± 
7.39 

1.32 ± 
0.24 

24 < 0.0001 

 Combined 0.73 
23.71 ± 4.44 0.82 ± 

0.11 
48 < 0.0001 

 
Maris 
Piper 

0.82 
14.09 ± 9.12 0.90 ± 

0.14 
24 < 0.0001 

AUTOcover
61 Harmony 0.66 

  27.15 ± 
7.60 

0.69 ± 
0.16 

24 0.0004 

 Combined 0.80 
22.60 ± 4.90 0.78 ± 

0.09 
48 < 0.0001 

 

 

  

  

  
Figure 5-10:  Potato leaf ground cover correlation at 54 DAP between GROUNDcover 
and AUTOcover

54 for (A) Maris Piper; (C) Harmony; (E) Combined (both varieties); 
Potato leaf ground cover correlation at 61 DAP between GROUNDcover and 
AUTOcover

61 for (B) Maris Piper; (D) Harmony; (F) Combined (both varieties).  
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5.5 Discussion 

5.5.1 Emergence 
From the emergence results it is clear that the resolution of the aerial imagery was 

not sufficient to be able to detect emerging shoots (for either automatic method) until 

they had started to develop some leaves (i.e. a leaf area > 1 cm2; figure 5-11a), 

whereas the ground-based assessment could detect emergence just as the mother 

tuber sprout had breached the surface of the soil (pre-first leaf). This partly explains 

why all the methods showed significant correlation for the Maris Piper plots at 33 

DAP compared to the Harmony plots, as the Maris Piper plants were larger because 

they had started to emerge at 19 DAP, whereas the Harmony plots had only started 

to emerge at 27 DAP (figure 5-11b). 

 

  
Figure 5-11: (A) An emerged potato plant of a few days that would be detected next 
to a just emerging plant (highlighted) that would not; (B) The difference in plant 
emergence by 33 DAP, showing Maris Piper plots (left hand side) and Harmony 
plots (right hand side). 
 
Being able to detect emergence at the point that it occurs is a key measurement, as 

the 50% emergence measure (half of the plot has emerged) can be used to predict 

the tuber initiation growth stage (O'Brien et al., 1998) as well as identify disease or 

issues that may have been initiated by the treatments applied to the trial plots 

(Sankaran et al., 2017). However, to be able to do this from the air would be difficult 

as higher resolution imagery would be needed by either flying lower or using a 

different sensor with a larger focal length or pixel count. Both options are likely to 

lead to an increase in flight times for the same area covered and the extra imagery 

captured would also increase the time required to process the data. 

 
The ~1 cm GSD resolution acquired should however have been sufficient to get 

accurate plant counts for the Maris Piper plots by 33 DAP, as capacity for this had 

already been shown by Gibson-Poole et al. (2017) (chapter 4). However, this was 

hampered by intermittent irregular tuber spacing caused by tubers rolling during the 

A B 
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planting operation, which was unfortunate for the trial as tuber spacing is an 

important factor in the development of the crop (Bussan et al., 2007). Because of 

this, some plants emerged much closer to their neighbours (and conversely others 

further away), with those in closer proximity entering intra-row canopy merging at a 

much earlier stage. This resulted in lower plant counts at 33 DAP for AUTOemerge
1 

and AUTOemerge
2 as some plants could not be distinguished from their neighbours 

(two plants being counted as one). AUTOemerge
1 consistently produced lower plant 

counts for both varieties as it was not robust enough to handle this irregularity in 

planting and although this improved with AUTOemerge
2 the final plant counts per plot 

was still generally lower than that produced by GROUNDemerge (figure 5-12). 

 

 

 
Figure 5-12: Box plot of plant counts at 33 DAP for (A) Maris 
Piper and (B) Harmony varieties (mean, median, standard 
deviation and outliers shown for each method).  

 
In contrast to the automatic methods, MANemerge showed much better correlation 

with GROUNDemerge for the Maris Piper plots by 33 DAP but was from a smaller 

sample size and the actual emerged points for the plots analysed were still not an 
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exact match. It did however show a considerably worse correlation for the Harmony 

plots and this was primarily due to the level of weeds appearing within the plots, 

which resulted in either overestimation (weeds counted as plants) or 

underestimation (plants thought to be weeds). The reason for this high level of 

weeds was attributed to the very dry weather experienced during application of the 

weed barrier (Griffin-Walker, 2016). Whatever the reason, it caused complications 

for emergence detection and ground cover assessment and was an issue that 

Gnädinger & Schmidhalter (2017) also commented on when trying to count maize 

plants. 

 
At the time of writing only a study by Sankaran et al. (2017) had also investigated 

potato emergence using a UAS. They also used a COTS modified to detect NIR and 

applied a pixel-based thresholding method to delineate vegetation from soil. They 

tested three methods, with one using a sizing parameter to only select a potential 

emerged plant if it was greater than 100 cm2. They also experienced issues with the 

sizing method due to earlier than expected intra-row canopy closure and were 

unable to determine final counts from 43 DAP due to intra-row canopy closure, as 

they didn’t model the location and development of the plants, simply thresholded at 

each sensing date. 

 
Sankaran et al. (2017) were operating their UAS at a much lower altitude (15 m 

AGL) with a 16 mega pixel camera, so the GSD of their imagery would have been 

finer, although they did not report what it was (it would likely have been ~0.5 cm 

GSD). However, their analysis methods still under recorded emergence plant counts 

compared to their ground-based data, which highlights the difficulty in attempting 

this via remote sensing. Including plant sizing as another parameter in AUTOemerge
2 

could have improved the emergence model and the thresholding proposed by 

Sankaran et al. (2017) also has merit. Making more use of height data could also 

improve delineation of plants whose canopies have merged by attempting to identify 

the crowns of each plant and would be an option worth pursuing. Sankaran et al. 

(2017) may not have this option available as they did not report processing their 

data into and orthomosaic. 

 

5.5.2 Ground cover 
Aerial ground cover analysis initially looked poor when the raw numbers were 

compared as GROUNDcover reported higher ground cover in general (figure 5-13), 
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but AUTOcover
54 and AUTOcover

61 both correlated well. The classification methods 

used for the two different sensing dates used different workflows due to the nature 

of the different sensors used, however some similarities remained, with the use of 

height data as part of the classification for both methods being key in discriminating 

plants from weeds. Height data obtained from a UAS using COTS cameras has 

been used successfully in several studies looking at trials of smaller plants such as 

wheat (Holman et al., 2016; Madec et al., 2017) and barley (Bendig et al., 2014; 

Bareth et al., 2016) and more recently in larger row crop plants such as Chinese 

cabbage and white radish (Kim et al., 2018), where the height data was used inform 

on the development of the plants. 

 

 
Figure 5-13: Box plot of potato canopy groundcover at 54 and 61 
DAP for all varieties (mean, median, standard deviation shown for 
each method). 

 
Further investigation into the mechanics of the ground data collection revealed why 

the raw numbers may have differed so much. A plot was viewed manually using the 

handheld grid of 100 equally size squares and ground stakes were placed on the 

ground within the viewing maxima of the grid (the four corners). The position of 

these stakes was then measured and revealed that due to the perspective that the 

observer has when looking at a plot on the ground using a grid, only ~1.65 m wide 

and ~1.2 m long area of the plot was being measured (figure 5-14a; Fenton, 2017a). 

Although this is a standard measure used for trials analysis it does highlight that the 

measurement could be skewed if the plot ground cover is very variable and larger 

plants within the viewing area could also occlude smaller plants behind them. 

Similarly, as this is a manual estimation, if two different observers used the same 
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grid to look at the same plot, the actual ground cover estimated by the two people 

would likely not be the same (although it would be close). 

 

 
Figure 5-14: (A) Manual identification of ground cover showing approximate area of 
trial actually measured (red box; ~1.65 m wide and ~1.2 m long), guard rows also 
shown (red arrows); (B) automatic identification of ground cover showing pROI being 
measured (red polygons), guard rows also shown (red arrows) and can also be 
measured if required. 
 
In contrast to this, the nadir viewpoint from aerial imagery allows the entire plot to be 

viewed and ground cover to be estimated directly against the area being measured 

(figure 5-14b), even if the plot has a large variation in the height between individual 

plants within the plot. This indicates that estimation of canopy cover from imagery 

obtained by a UAS is likely to be a more representative measure and that if 

effectively processed, georeferenced and classified, would give a much more 

standardised result against each plot. 

 

5.5.3 Survey effort 
The ground-based methods for emergence and ground cover are fast and efficient 

measures that are targeted specifically to give data that represents variability 

between plots. To measure emergence over the number of plots in this study took 

an observer 1~2 hours, whereas ground cover analysis was much quicker at 60~30 

minutes as observations become quicker as the amount of canopy increases 

(Fenton, 2017b). In contrast to this, aerial data collection with the UAS took only 10 

minutes, although more time was required to setup and especially to layout GCPs 

(~1 hour in total per survey visit, with at least a third this time required to deploy and 

retrieve GCPs). Processing of the aerial imagery (orthomosaic generation and 
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classification) also took some time (~2 hours per dataset), however most of this was 

automated and with further optimisation could be completely automated. The only 

exception to this is again the GCPs, which required manual placement during 

orthomosaic generation and can take at least 20 minutes per survey to place. 

 
Therefore, surveying using a UAS is not necessarily faster than taking ground-based 

measurements, but it does cover a larger area and could include measurements of 

guard plots as well as measures not typically taken from the ground. The 

photogrammetry process used in this study produces high resolution DSM as well 

as orthomosiac data, so the ability to measure the height of the plants surveyed is 

also possible, would be much quicker than measuring by hand (Holman et al., 2016) 

and would further add to trial analysis as plant height has input in predicting yield 

within potato crops (Arslan, 2007). 

 

5.5.4 Impact of weed development 
The level of weeds within this trial caused problems for all the automatic methods 

and also for the ground-based assessment at later stages, simply because the 

weeds (primarily Fumaria officinalis and Convolvulus arvensis) overwhelmed the 

potato plants that had emerged later (the Harmony plots; figure 5-15a) or were 

developing at slower rates due to the effects of PCN and the treatments that had 

been applied. Gnädinger & Schmidhalter (2017) also encountered issues with 

weeds affecting the accuracy of plant counts and ground cover assessment of 

maize plants, although studies on the detection of weeds at early plant growth 

stages have been shown to be successful for maize (Peña et al., 2013) and 

sunflower crops (Peña et al., 2015). 

 

At the later stages of plant development in this study, the weeds had become 

integrated within the canopy of the plants being measured making separation of 

weed from plant challenging. By 79 DAP weed coverage for some plots reached 

almost 100 % (figure 5-15b) and although the actual accuracy of the classification at 

54 and 61 DAP was not directly verified using an error matrix, its comparison with 

the results of the ground assessment showed a good correlation indicating that 

weeds can be effectively separated from potato vegetation even if within the canopy 

of the potato plants. 
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Figure 5-15: (A) Example of weeds within plots at 61 DAP (potato plant indicated 
with red arrow, the lighter green plants are Fumaria officinalis); (B) Example 
weeds dominating plots at 79 DAP, with some plots showing near 100 % weed 
coverage (potato plant indicated with red arrow, the flowering plants are Fumaria 
officinalis).  
 

5.6 Conclusion and future thoughts 
This study has shown that further development of models that are more sensitive 

and robust are required to be able to effectively identify potato emergence, however 

ground cover assessment from a UAS is effective and likely to be a more 

representative measure compared to traditional ground-based analysis. Also, for a 

similar survey effort as that required for a ground-based assessment, data acquired 

from a UAS can enable measurements of more aspects of the trial to be captured 

(e.g. height). Further to this, being able to view and analyse the trial as individual 

plants rather than just plots or rows could allow more detailed analysis of trial 

development and issues, as a finer scale of variability within a row or plot could be 

achieved without increasing survey effort. In the future, the use of highly accurate 

GNSS systems onboard the UAS could help negate the need to use GCPs, thus 

speeding up survey and image processing time alike and the use of narrowband 

multispectral cameras specifically designed for agriculture that can capture red, 

green, blue, NIR and rededge reflectance (the sharp transition seen in vegetation 

between red to NIR wavelengths) will also give more information relating to the 

health and development of each plant (Nebiker et al., 2016; Pauly, 2016). 

 
To conclude, as small UAS can only really be used in fair weather conditions (i.e. 

not raining and wind speeds < 8 m/s to ensure safe operation), they are unlikely to 

replace traditional ground-based methods completely. The results from this chapter 

highlight the need for effective classification software, indicating that OBIA can be 

effective in allowing the separation of weeds from plants of interest, further adding to 

the evidence for the 3rd objective of this PhD project. It also meets part of the 4th 

objective as trials analysis is one of the core agricultural research activities that 
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SRUC undertake. Even though ground-based and aerial measures correlated there 

were still differences, partly because ground-based measures can be subjective and 

not necessarily representative of the conditions on the ground. Therefore, aerial 

based assessment would bring an element of standardisation to this activity, as well 

as providing a wider coverage of measures that could benefit trials monitoring and 

analysis in the future. 

 

  



  

160 
 

 

  



  

161 
 

Chapter 6. Environmental applications – Monitoring 
the spread of invasive non-native 
vegetation along riparian habitats 

6.1 Introduction 
In the UK, invasive non-native species (INNS) are those that have been introduced 

to an environment outside of its normal distribution via a third party (typically though 

a human inter-action), and INNS are broadly defined in the Non-Native Species 

Framework Strategy for Britain as “species whose introduction and/or spread 

threaten biological diversity or have other unforeseen impacts” (Defra, 2015) 

 

INNS covers a wide range of species, both flora and fauna, whose spread can result 

in damage or degradation of land and infrastructure used for agricultural, 

conservation or urban uses, and which has an estimated overall cost to the British 

Economy of ~£1.7 billion annually (Williams et al. 2010). Riparian habitats are 

considered to be particularly susceptible to INNS as the waterway aids in the spread 

of their seeds, and the nature of riverbanks and sediment deposits makes initial 

establishment more likely (Tickner et al. 2001). 

 
In Scotland, regulations regarding the spread of INNS are covered by Section 14 of 

the Wildlife and Countryside Act 1981, as amended by the Wildlife and Natural 

Environment (Scotland) Act 2011. These regulations denote that it is an offence to 

release or allow to escape from captivity, any species to a place out with its native 

range. However, many INNS are already established in the UK and within Scotland, 

three species that typically inhabit riparian habitats can be commonly seen; 

Himalayan Balsam (Impatiens glandulifera), Japanese Knotweed (Fallopia japonica) 

and Giant Hogweed (Heracleum mantegazzianum). 

 
UAS have already been used to monitor riparian habitats (Husson et al., 2014; 

Rusnák et al., 2018) and to identify various riparian INNS including alligator weed 

(Alternanthera philoxeroides; Göktoǧan et al., 2010), kariba weed (Salvinia molesta; 

Göktoǧan et al., 2010), saltmarsh cordgrass (Spartina alterniflora; Wan et al., 2014) 

and yellow flag iris (Iris pseudacorus L.; Hill et al., 2016). Himalayan balsam (Michez 

et al., 2016), Japanese knotweed (Michez et al., 2016; Müllerová et al., 2017b; 

Martin et al., 2018) and giant hogweed (Michez et al., 2016; Müllerová et al., 2017b) 

have also all been investigated using UAS, with varying levels of success. 
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This exploratory chapter addresses the 3rd and 4th objective of this PhD project as it 

investigates the use of an UAS as a monitoring tool to identify the level of infestation 

of giant hogweed within, and adjacent to, a riparian habitat. With the approval of 

Clackmannanshire Council (Andy Macpherson) and Stirling Council (Guy 

Harewood), the study site was monitored over two years. The results from the first 

survey were presented at the University of Edinburgh, School of GeoSciences 

Postgraduate Research Conference in March 2016, and at the 16th National 

Biodiversity Network Conference (Edinburgh, November 2016). 

 

6.1.1 Himalayan Balsam 
First recorded in the wild in 1855, this species was brought to Britain as an attractive 

garden plant in the early 19th century (Booy et al., 2008c).  It is an annual 

herbaceous plant that can grow up to 2 m in height and forms dense stands of 

vegetation (Booy et al., 2008c; Tanner et al., 2013). It overshadows native flora 

reducing both plant and invertebrate biodiversity above and below ground (Tanner 

et al., 2013) and when it dies back in the winter it can leave exposed patches of soil 

or riverbank that can be more easily eroded (Booy et al., 2008c). It spreads through 

its seeds, which are small and easily dispersed as the seed heads burst when ripe 

(Booy et al., 2008c), and its estimated annual cost to the British economy is 

£1,000,000 (Williams et al., 2010). 

 

6.1.2 Japanese Knotweed 
Introduced to Britain in the mid-nineteenth century as an ornamental garden plant it 

is now widespread through Britain (Williams et al., 2010; Booy et al., 2008b).  It is an 

herbaceous perennial plant that forms dense monospecific stands that can grow up 

to 3 m high, which can shade out native vegetation (Jones et al., 2011; Booy et al., 

2008b). It has also hybridised with other similar species including Giant Knotweed 

(Fallopia sachalinensis), which has much larger leaves, to create the hybrid 

Bohemian Knotweed (Fallopia x bohemica), however these are all still non-native 

species (Jones et al., 2011; Booy et al., 2008b). 

 
It rarely produces viable seed in Britain but it spreads rapidly via vegetative 

regeneration from very small amounts of its rhizome (0.7 gram of rhizome can 

produce a new plant in 10 days), and it can also be highly damaging to buildings 

and infrastructure (including flood defences), as it can grow up through some hard 

surfaces (Williams et al., 2010; Jones et al., 2011; Booy et al., 2008b). Due to its 
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ability to grow through hard surfaces and the rapidity of growth from small pieces of 

rhizome, it is very expensive to control and costs the British economy an estimated 

£165,609,000 annually, of which ~£5,637,000 is attributed towards riparian habitats 

(Williams et al., 2010). 

 

6.1.3 Giant Hogweed 
First recorded in Britain in 1817 (Nielsen et al., 2005), giant hogweed is an 

herbaceous monocarpic perennial plant that originates from the Caucasus 

Mountains and other parts of Central Asia. It is the tallest herbaceous species in 

Europe and at full maturity can have inflorescences up to 80 cm wide, can reach up 

to a height of 5 m (figure 6-1), and have large, wide leaves up to 2.5 m long (Nielsen 

et al., 2005; Booy et al., 2008a; Müllerová et al., 2013). It outcompetes other 

vegetation due to the shade of its large leaves which grow early in the year, and as 

it dies bank in the winter it can leave bare patches of ground or riverbank, making 

them more likely to be eroded (Harewood, 2014). The plant can also be a host for 

certain fungi such as Sclerotinia spp. (Seier & Evans, 2007), which can be a blight to 

many crops including oilseed rape and potatoes (Clarkson et al. 2017), both of 

which are important crops for Scotland’s agricultural sector. 

 

  
Figure 6-1: (A) Example attributes of giant hogweed; (B) Calum Tyler (approx. 2 m 
tall) showing approximate height of giant hogweed at the site. 
 
However, giant hogweed is also a public health concern as it also contains a 

phytophototoxic sap that can induce phytophotodermatitis (burning of the skin when 

exposed to ultraviolet radiation) in humans and livestock with unpigmented skin 

(Nielsen et al., 2005). As it is a monocarpic species, it typically lives for 3-5 years 

and when flowering it has been estimated that it can produce 5000 to more than 
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100,000 seeds, but more typically an average of 20,000 seeds (Nielsen et al., 2005; 

Perglová et al., 2006). These seeds can be easily transported along waterways and 

persist in the soil for at least three years (Pergl et al., 2011; Perglová et al., 2006). 

Annually giant hogweed costs the British economy an estimated £2,362,000, with 

£964,995 directly related to its effects and management along riparian habitats 

(Williams et al. 2010). 

 

6.2 Aim of the case study 
The aim of this case study is to identify if a UAS equipped with COTS cameras can 

be used to effectively map the current extent of the invasive non-native species 

giant hogweed. 

 
The aerial data collected for this study was from a single site and only for a single 

INNS (giant hogweed), as a pilot study to identify the effectiveness of the UAS for 

vegetation surveys of this type. This study was one of the first active uses of the 

UAS system outlined in chapter 3 and although the study site was surveyed more 

than once, full processing and analysis was only attempted on the first dataset and 

normalisation was not carried out as an effective method had not been identified at 

the time of analysis. The intention was to revisit this data, perform normalisation and 

include all the surveys in order to refine and improve the classification algorithm, 

however there was insufficient time to complete this work. 

 

6.3 Methods 

6.3.1 Study site 
The site chosen for this case study was a brownfield site called Manor Powis Bing. 

Originally a coal mine bing, the site has then been used for various applications, 

including as a municipal tip and more recently a 4x4 training circuit (Hackett, 2003). 

The site is jointly owned by Stirling and Clackmannanshire councils and is bounded 

by two transport mechanisms that could be important to facilitate the spread of INNS 

seeds; the Alloa-Stirling railway to the North and the River Forth to the South (figure 

6-2). 

 
  



  

165 
 

 
Figure 6-2: The Manor Powis Bing study site (orange boundary), ~18 ha; Inset 
shows area (orange) and contains Ordnance Survey data © Crown copyright and 
database right 2015. 
 

6.3.2 Ariel data collection 
Aerial data was acquired using the UAS and sensor package indicated in chapters 2 

& 3, with the first survey conducted on the 6th July 2015 to capture giant hogweed 

during its flowering phase (anthesis). Further surveys were conducted to capture the 

phenological changes of giant hogweed, at varying times of the day and 

environmental conditions (full sunlight ~ overcast; table 6-1); 1st October 2015 

(post-anthesis); 20th April 2016 (emergence); 21st July 2016 (waning anthesis). 

 
Table 6-1: Time each survey conducted, and 
environmental conditions encountered. 
 

DAP Time Conditions 
6th July 2015 11:00 Overcast 

1st October 2015 11:00 Sunny 
20th April 2016 12:30 Sunny 
21st July 2016 15:00 Overcast 
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For each survey, all data was acquired using pre-programmed automatic flights, 

travelling at 5 m/s and at 115 m AGL, to capture imagery at ~3.2 cm GSD. For each 

survey date, two flights were required to cover the entire area, and a 70 % forward 

and 72 % side overlap was used due to sensor limitation of 6 seconds between 

successive image captures (figure 6-3a). In total the area surveyed covered ~24.19 

ha and included the Manor Powis site itself and the immediate area around it. 

Georectification of imagery was assisted using 16 GCPs (easily recognisable 

features; figure 6-3b) that had been surveyed at a later date using a Leica GPS 

1200 survey grade RTK GPS (Leica Geosystems, Heerbrugg, Switzerland) with an 

expected accuracy of ±2 cm (Leica, 2008). 

 

  
Figure 6-3: (A) Standard lawnmower pattern at 115 m AGL capturing 141 images for 
both RGB and NIR; Purple boxes show expected image footprint; Green dots show 
image capture locations; (B) Capturing point data (Alistair Hamilton); Ground points 
were captured post survey using noticeable features within the imagery. 
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6.3.3 Image processing 
For the first survey (6th July 2015), image pre-processing was carried out as 

indicated in chapter 3, however normalisation was not performed (for the remaining 

surveys, only the visual dataset of each was processed).  Some exceptions from the 

processing flow indicated in chapter 3 were also made to allow for the creation of 

height data across the scene surveyed. The linear RGB and NIR datasets were 

processed using Agisoft Photoscan (v1.2.0; Agisoft LLC, St. Petersburg, Russia), 

using high settings (image alignment highest; dense cloud high quality; depth 

filtering mild) and optimised using the 16 GCPs (using an estimated accuracy of 

0.15 m). However, the visual dataset was processed using the ultra-quality dense 

cloud option (figure 6-4), and the DSM from this process was used rather than the 

DSM of the linear RGB dataset. The reason for this was twofold, firstly so that a 

DSM with the lowest possible GSD (i.e. ~3.2 cm GSD;  figure 6-5) was available to 

be processed into a vegetation height layer, and secondly, to enable the creation of 

a DTM from within Agisoft Photoscan itself, which required the use of data with more 

visual clarity, so that obvious ground points could be identified. 

 

 
Figure 6-4: The visual orthomosaic of the area surveyed. Dense stands of flowering 
hogweed can be clearly seen throughout the site (example area indicated with red 
arrow). 
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Figure 6-5: The digital surface model of the area surveyed, in meters above sea 
level (MASL). Again, the dense stands of giant hogweed can be seen due to the 
height of the vegetation (example indicated with red arrow). 
 

6.3.3.1 Vegetation height layer creation 
As giant hogweed is a relatively tall species, having detailed vegetation height 

information would be important as part of the classification process. The best 

available DTM for the study site (from Ordnance Survey) was at a resolution of 5 m 

GSD, and therefore gave a poor level of detail compared to the ~3.2 cm GSD 

imagery that had been captured. Therefore the ‘Classify Ground Points’ tool within 

Agisoft Photoscan was used to interpolate a surface using the parameters; 

maximum angle 15°, maximum distance 0.06 m and cell size 75 m. This initial 

ground point classification was not perfect and was manually modified (insertion of 

more ground points) to enable better coverage around areas of denser vegetation, 

along the riverbank and on the more raised area to the east of the study site. This 

modified ground point classification was then used to create a DTM of the scene 

surveyed (figure 6-6), which was then processed within ArcGIS (v10; ESRI, 

Redlands, USA) to create a vegetation height model (DSM – DTM; figure 6-7). 
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Figure 6-6: The digital terrain model of the area surveyed (in meters above sea 
level), derived from the visual dataset using Agisoft Photoscan. 
 

 
Figure 6-7: The vegetation height model derived using ArcGIS (DSM-DTM). The 
very low vegetation height indicated on the scale was caused by occasional points 
of noise within the DSM and DTM, primarily at the edges of the data over the river 
forth. 
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6.3.3.2 Orthomosaic co-registration 
As the visual dataset was used to create the DSM, DTM and vegetation height layer, 

the linear RGB and NIR orthomosaics needed to be aligned to the visual dataset. An 

offset could be seen between the datasets, most likely due to a combination of  

factors including the use of natural features as GCPs (the centres of which may not 

have been perfectly identified within the different datasets), the visual dataset being 

processed differently, as well as the extra distortion created from the 585 nm long 

pass filter applied to the modified camera. ArcGIS was used to georeference both 

linear datasets to the visual dataset using 17 control points and a third order 

polynomial transformation, giving RMS errors of 0.02 m for the RGB dataset and 

0.04 m for the NIR dataset, that enabled the datasets to be used together (figure 6-

8).  

 

 
Figure 6-8: A false colour composite (colour infra-red) of the area surveyed. 
 

6.3.3.3 Preparation for classification 
Due to the image size limitations of the OBIA software package Interimage (v1.43; 

Camargo et al., 2012), the orthomosaic datasets needed to be trimmed to a size that 

would allow them to be processed. To facilitate this ArcGIS was used to create a 

four band orthomosaic that only contained the red, green and blue bands from the 
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RGB linear orthomosaic and the blue band from the NIR linear orthomosaic (i.e. the 

band containing just NIR wavelengths of light). This four band orthomosaic and the 

vegetation height layer were then split into 391 individual blocks (of 1000 x 1000 

pixels; figure 6-9), to allow each one to be processed independently using 

Interimage. 

 

 
Figure 6-9: An example of the orthomosaic split into 391 image blocks (red squares) 
of 1000 x 1000 pixels, to enable their use within the classification process. 
 

6.3.4 Automatic giant hogweed classification method 
To enable the separation of giant hogweed from 

the other vegetation at the study site, a 

processing flow (termed semantic net) was 

created within Interimage and run against each of 

the 391 image blocks in turn. The semantic net 

used a rules-based approach with nine classes 

over two levels to classify the entire scene (figure 

6-10). 

 

At the first level the scene was simply split to 

show areas that were shadowed or not, using the 

TA_Arithmetic operator (a pixel-based 

 
Figure 6-10: The semantic net 
used, showing all classes and 
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thresholding operator) using the following 

thresholds: 

levels. 

 

 Shadow = 
𝐷𝑁𝑅+𝐷𝑁𝐺+𝐷𝑁𝐵

3
 ≤ 4500 

 

 NotShadow = 
𝐷𝑁𝑅+𝐷𝑁𝐺+𝐷𝑁𝐵

3
 > 4500 

 
Where 𝐷𝑁𝑅  refers to the DN from the red channel of the unmodified camera, 𝐷𝑁𝐺  

refers to the DN from the green channel of the unmodified camera and 𝐷𝑁𝐵  refers 
to the DN from the blue channel of the unmodified camera. 
 
Anything not classed as a shadow was processed further within a second level 

using either the TA_Arithmetic operator or the TA_Baatz_segmenter operator (a 

multiresolution segmentation operator), using decision rules to enable each object to 

be classified if certain criteria were met (table 6-2). Three vegetation indices were 

used as part of these decision rules (Eq. 6-1, 6-2 and 6-3). 

 

𝑁𝐷𝑉𝐼 =
𝐷𝑁𝑁𝐼𝑅 − 𝐷𝑁𝑅

𝐷𝑁𝑁𝐼𝑅 + 𝐷𝑁𝑅
 

(6-1) 
(Rouse et al. 1973) 

𝐸𝑥𝐺 = (2 ⋅ 𝐷𝑁𝐺 − 𝐷𝑁𝑅 − 𝐷𝑁𝐵) 
(6-2) 
(Woebbecke et al., 1995) 

𝐸𝑥𝑅 = (1.4 ⋅ 𝐷𝑁𝑅 − 𝐷𝑁𝐺) 
(6-3) 
(Meyer & Neto, 2008) 

 

Where 𝐷𝑁𝑁𝐼𝑅 refers to the DN from the blue channel of the modified camera 𝐷𝑁𝐺 
refers to the DN of the green channel of the unmodified camera, 𝐷𝑁𝑅  refers to 

the DN of the red channel of the unmodified camera and 𝐷𝑁𝐵 refers to the DN of 
the blue channel of the unmodified camera. 
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Table 6-2: The operators, decision rules and reliability scores used for each class 
within the Interimage processing flow. For the decision rules, each item refers to the 
properties of the object being assessed; Brightness and Ratio are attributes within 
Interimage; GLCM stands for grey-level co-occurrence matrix (a textural attribute). 
 

Class Operator Decision Rule Reliability 
GHFlowers TA_Baatz Height < 3.9 m 

Height > 0.5 m 
Size ≥ 14 pixels 
Brightness ≥ 15000 
Mean GLCM (Blue) ≥ 14000 

0.7 

    
GHUmbel TA_Baatz Height < 3.9 m 

Height > 0.5 m 
ExG ≥ 20000 
Within 50 pixels of GHFlowers 

0.6 

    
Trees TA_Baatz Height > 3.9 m 0.5 
    
GHLeaf TA_Baatz Height ≤ 2 m 

Ratio (Blue) < 0.128033 
Mean GLCM (Green) ≥ 14000 

0.4 

    
Hogweed TA_Baatz Height ≤ 3.9 m 

Size ≥ 10 pixels 
ExG ≥ 12000 
ExR ≤ -4000 
Within 50 pixels of GHFlowers 
Neighbouring GHLeaf 

0.3 

    
OtherVegetation TA_Arithmetic NDVI ≥ 0 0.2 
    
NotVegitation TA_Arithmetic NDVI < 0 0.2 

 
The classes within this second level of processing represented specific features of 

importance. GHFlowers are the actual flower heads of each giant hogweed plant.  

GHLeaf are the brighter and more distinct green leaves of giant hogweed. Hogweed 

represents the darker (semi shadowed) green leaves of giant hogweed, which were 

difficult to separate from other vegetation and so used proximity to either GHFlowers 

or GHLeaf objects as verification. Similarly, GHUmbels also used proximity to 

GHFlowers, as they represent giant hogweed vegetation directly surrounding the 

flowers, or flower heads that no longer have flowers and have started to go to seed. 

The trees class represent trees, OtherVegetation is any other vegetation and 

NotVegetation is anything that is not vegetation. 

 
All of the classes (figure 6-10) used top down decision rules to create an object 

hypothesis for each class, and the final allocation of these classes was further 
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governed by priorities (the reliability score). This reliability score allows a class 

hypothesis to be given a higher priority over another if there is a spatial conflict (i.e. 

objects covering the same spatial area and being potentially more than one single 

class). These conflicts and identification of proximity to other objects were all 

resolved at the end of the process, via a single bottom up decision rule within the 

NotShadow class, spatially resolving the entire classification (Interimage, 2010). 

 

6.4 Results 
The output from all 391 image blocks was integrated into a single layer within 

ArcGIS to show the classification across the area surveyed (figure 6-11) and identify 

the amount of ground covered by giant hogweed plants (table 6-3).  

 

 
Figure 6-11: The final classification of the area surveyed showing all the classes (the 
class indicated as GH Dark Leaf is the Hogweed class). 
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Table 6-3: Ground cover in ha and as a percentage of the area surveyed (~24.19 
ha) for each of the eight classes. 
 

Class Area (ha) % of area surveyed 
GHFlowers 0.35 1.44 
GHUmbel 0.74 3.06 
GHLeaf 1.24 5.12 
Hogweed 1.14 4.73 
Trees 4.04 16.37 
OtherVegetation 8.21 33.92 
NotVegitation 5.96 24.63 
Shadow 2.50 10.37 

 
To identify the accuracy of the classification, an error matrix was created so that 

kappa (Ǩ) statistics (eq. 6-4) could be generated to give an indication to the level of 

accuracy. As only the presence or absence of giant hogweed was important for this 

study, all of the giant hogweed related classes (GH flowers, GH leaf, GH Umbel and 

Hogweed) were amalgamated into a single combined class (giant hogweed; 3.47 

ha; 14.36 % of area surveyed) and all of the other classes into a second class (not 

giant hogweed; 20.71 ha; 85.64 % of area surveyed). Across the area surveyed, 225 

randomly placed 1 x 1 m plots were visually checked for the presence or absence of 

giant hogweed and compared with the results from the automatic classification 

(similar in method to Müllerová et al. 2013). 

 

Ǩ =
𝑃𝑜 − 𝑃𝑐

1 − 𝑃𝑐
 

 

(6-4) 

Where 𝑃𝑜 represents actual agreement and 𝑃𝑐 represents chance agreement (Weih 
et al., 2010). 
 
The error matrix (table 6-4) showed an overall accuracy (OA) of 88 %, with a 

producers accuracy (PA) of 95 % and users accuracy (UA) of 68 % for the presence 

of giant hogweed. It resulted in a kappa statistic (Ǩ) of 0.71 which indicates a good 

level of agreement between the automatic and visual classification methods. 
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Table 6-4: Error matrix of giant hogweed presence or absence for the visual and 
automatic classification. 
 

  

Producer 
(Visual classification) 
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Giant 
Hogweed 
Present 

Giant 
Hogweed Not 

Present 
Total UA 

Giant 
Hogweed 
Present 

52 24 76 0.68 

Giant 
Hogweed Not 

Present 
3 146 149 0.98 

Total 55 170 (225) 
 

PA 0.95 0.86 
 

OA (0.88) 
 

 

6.5 Discussion 
Although four surveys were carried out for this study, only the first dataset was fully 

processed and classified as a pilot study to identify how effective UAS could be in 

detecting the presence of giant hogweed. This classification gave an OA of 88%, PA 

of 95%, UA of 68% and Ǩ of 0.71, which, when using the same indication of real-

world accuracy as indicted in Chapter 4 (OA >= 85%, PA/UA >= 70 % and Ǩ > 0.61), 

indicates that classification method used in this study is not yet effective enough to 

be a reliable measure of the presence of giant hogweed. 

 
There are several areas that need improvement, with the memory limitations of 

InterImage being one of the first areas to address. Splitting the area surveyed into 

small blocks introduced errors as height data was used extensively to filter out 

different layers of vegetation (i.e. trees, shrubs and giant hogweed itself as it is a 

very tall plant), but these features could be split by the borders of the image blocks, 

resulting in misclassifications (figure 6-12). Other plant species were also 

misclassified as giant hogweed, such as the shrub Elder (Sambucus nigra), which 

was misclassified as giant hogweed flowers due to the height of the shrub being 

similar to giant hogweed, and their flowering phase (also relatively large clusters of 

white flowers) occurring at the same time. To the north of the railway line, creeping 

buttercup (Ranunculus repens) was present across a large area within a field, and 

this was misclassified as giant hogweed leaf due to its textural and spectral qualities 

being similar. 
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Figure 6-12: (A) Overview of brown field site surveyed for giant hogweed in July 
2015; showing (B) inset of detailed section; (C) classification of detailed section, with 
class legend shown. The red arrow indicates a small misclassification of giant 
hogweed due to the tree being split by an image block (the shape of the tree should 
be rounder and not have a flat side). 
 
There are a small number of researchers specifically looking at this this species and 

other INNS species using UAS (Müllerová et al., 2017b; Michez et al., 2016) and all 

have had varied amounts of success with mapping giant hogweed using COTS. 

Michez et al. (2016) used a fixed wing UAS with modified and unmodified COTS 

cameras but did not appear to use height data as part of their classification method. 

Their study showed effective results (OA 97% and Ǩ 0.93) when using an OBIA 

approach, however they did not report UA or PA and appeared to only be classifying 

the flowers (or clusters of flowers) and not the full extent of giant hogweed 

vegetation (or non-flowering giant hogweed). 

 

The study by Müllerová et al. (2017b) also used a fixed wing UAS with modified and 

unmodified COTS cameras. They also did not specifically indicate that height data 

was being used, although a prior study by a co-researcher (Dvořák et al., 2015) did 

indicate that height was used as part of their classification routine. They reported 

very high accuracy (OA 100%, PA 99%, UA 100% but Ǩ was not reported) when 

using an OBIA approach for surveying giant hogweed in its flowering stage but 

B C 

A 
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reported difficulty with detecting the giant hogweed leaves surrounding the flowering 

umbels. Their study also highlighted that phenological changes (differences 

between flowering stage and die back) could assist with the detection of INNS 

species, a concept supported by other researchers investigating various INSS 

through remote sensing (Dorigo et al., 2012; Bradley, 2014; Martin et al., 2018). 

 

Although the extra surveys carried out in October 2015, April 2016 and July 2016, 

were not used directly in this study, the combined use of data showing different 

phenological stages of giant hogweed (figure 6-13) could be useful in improving the 

classification result, allowing maps of the extent of giant hogweed to be created and 

therefore used to inform future management decisions on the control of the species. 

As giant hogweed is estimated to cost the British economy ~£2,362,000 annually, 

with £964,995 directly related to its effects and management along riparian habitats 

(Williams et al. 2010), the ability to monitor it remotely would aid in reducing these 

costs, and could help highlight vectors for the spread of seed from areas adjacent to 

riparian habitats. 

 

  

  
Figure 6-13: Phenological changes of a dense stand of giant hogweed; (A) 6th July 
2015 (anthesis), flowering can be seen (white flowers); (B) 1st October 2015 (post-
anthesis), dead stalks of flowering plants can be seen; (C) 20th April 2016 
(emergence), newly emerging plants dominating the ground; (D) 21st July 2016 
(waning anthesis), less flowers visible as they ripen into seed heads. 

B 

C D 

A 
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Manual methods of surveying for giant hogweed are labour intensive, with one 

example using a group of 10 volunteers led by two experienced rangers to survey 

~24 km of a stretch of the River Allen (Stirlingshire) over a period of five days 

(Harewood, 2014). This equates to ~5 km per day but only up to a maximum of 50 

m on either side of the river was mapped, with the position of plants (or length of 

dense stands) mapped using handheld GPS. If a UAS had been used, then a similar 

(or even greater) length of river could have been surveyed per day but would have 

also covered larger stretches of the riverbank and would only require two or three 

people to complete. Pergl et al. (2011) suggests covering as large an area as 

possible, as just 1% of the seed set from an average giant hogweed plant could 

result in 200 seedlings, and therefore the presence of giant hogweed out with the 

riparian habitat could well be a vector for seed dispersal back into it. There would of 

course be regulatory issues to overcome when using a UAS, due to the proximity of 

urban areas and public rights of way, and heavily wooded areas would likely be 

difficult or impossible to survey from the air, but the use of a UAS would allow for a 

more expanded survey for a similar effort. 

 
At the actual Manor Powis site itself, a manual survey undertaken by Currie & 

Bairner (2013), showed the approximate distribution of giant hogweed (including 

dense patches) within the site in 2013 (data collected in March & August). In total, 

Currie & Bairner (2013) estimated that ~9.8 ha of the site was affected by Giant 

Hogweed in 2013, of which ~1.75 ha was classed as dense stands. The results of 

this study indicate that ~2.89 ha of ground is directly covered by giant hogweed in 

2015 (within the bounds of the study site, not the entire area surveyed), with most of 

the site now hosting giant hogweed to some degree (figure 6-14). Both the position 

and size of the dense stands of giant hogweed appear to have increased since 

2013, however Currie & Bairner (2013) only gave the approximate distribution of 

giant hogweed (they were actually cataloguing invertebrates), and as the 

classification accuracy of this study is not yet effective, it cannot be reliably said that 

giant hogweed is increasing across the site. However, as the first recorded sighting 

of giant hogweed at Manor Powis appears in 1995 and only in the south east of the 

study site (NBN Atlas, 2018; figure 6-14), it is likely that the species has been 

spreading steadily through the area, most likely aided by the use of the site as a 4x4 

training circuit. 
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Figure 6-14: Extent of giant hogweed in 2013 (purple polygons) and 2015 (orange 
points). Red arrow indicates the approximate position of giant hogweed noted in 
1995 (NBN Atlas, 2018). Contains Ordnance Survey data © Crown copyright and 
database right 2015. 
 
Although further work is required on the 

classification method used in this study, 

the identification of flowering giant 

hogweed does look promising, as shown 

by Müllerová et al. (2017b) and Michez 

et al. (2016). If the classification can be 

improved to reliably show the size of 

individual flowering umbels (or 

approximation of the number of mature 

plants) then there is also the possibility 

of estimating the amount of seed that 

could be produced, as this can differ per 

plant based on a number of factors, 

including the size, number and position 

of flowering umbels (figure 6-15; 

Perglová et al. 2006). 

 

 
 
Figure 6-15: Schematic representation of 
the ordering of  umbels and their position 
within the hierarchaical inflorence system 
of giant hogweed (Perglová et al. 2006). 
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The majority of seeds from mature plants (60-90%) are likely to fall within only 4 m 

of its parent plant (Nielsen et al., 2005), however the remaining could travel via wind 

dispersal from 10-50 m (Caffery, 1994). Identification of the amount of seed created 

(and at what points and what height of the seed heads) could then be modelled with 

the distances they are likely to travel and used to identify how far the species could 

spread into neighbouring areas. If this could be reliably done at the Manor Powis 

site, then an indication of the number of seeds getting onto the railway line could be 

made as well as an indication of the number of seeds entering into the River Forth. 

 

Either of these transport mechanisms could enable the seeds to travel further, via 

the slipstream of fast-moving trains or via the ability of the seeds to float from 8 

hours up to 3 days (Moravcová et al., 2007). The knowledge of potential seed 

dispersal has value to land managers trying to tackle this species and would aid in 

its eradication, as the Wildlife and Countryside Act 1981 holds individuals criminal 

responsible for spreading INNS. One example of this being the management of the 

railway line itself as active management of giant hogweed along the railway margins 

was observed on the 6th of July 2015. Being able to identify the source (and scale) 

of the invasion onto the railway could result in a shift of management decisions into 

trying to tackle the source of the seed, rather than just the plants in the margins of 

the railway line itself, which if done cooperatively with neighbouring landowners 

could prove more successful in eradicating the problem (Wade, 2015). 

 

6.6 Conclusion and future thoughts 
This study shows that the high resolution data provided by UAS can be used to 

classify giant hogweed and that the height data produced can be used to split up the 

layers of vegetation, assisting in the classification of tall species such as giant 

hogweed from the surrounding vegetation. If taken further, then classifications of this 

kind could also aid in modelling the spread of giant hogweed, which in turn could be 

of great benefit to land managers who are trying to control INSS. Although this study 

was not completely successful in its current form, the work of other researchers (e.g. 

Müllerová et al., 2017b; Michez et al., 2016) indicates that the remote sensing of 

giant hogweed and other INNS using UAS is worth pursuing, and therefore UAS 

could become valuable tools to aid in the eradication of problem plant species. 
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To conclude, this chapter meets part of the 4th objective of this PhD project through 

showing the ability to detect INNS species, although further work is required to 

refine the automatic classification method and bring it up to a similar standard of 

other studies. This would be aided by the use of OBIA software that does not require 

the data to be split into individual image blocks, which in turn adds to the 

requirements for the 3rd objective of this PhD project. Future collaboration with 

Clackmannanshire and Stirling council should also be pursued so that optimum 

survey methods to enable effective monitoring of this species along riparian habitats 

can be identified, especially as the nature of riparian habitats (typically long and 

winding) may require the use of a UAS with longer endurance than that used in this 

study (e.g. a fixed wing UAS). 
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Chapter 7. Experimental applications – Upscaling 
greenhouse gas estimations from different 
land use types 

7.1 Introduction 
Climate change has been linked to 

anthropogenic effects (Forster et al., 

2007) and is being driven by the 

increasing emissions of greenhouse 

gases (GHG; figure 7-1), such as 

carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O). Although 

these GHG are biogenic and natural 

in the environment, the way that 

humans manage the land can 

influence how much of each GHG is 

produced. This is especially true for 

CH4 and N2O, both of which have a 

much higher global warming potential 

compared to CO2 than, over a 100-

year lifetime (298 and 34 times 

respectively; Myhre et al., 2013). 

 

 
 
Figure 7-1: Atmospheric concentrations of 
important long-lived green-house gases 
over the last 2,000 years. Increases since 
about 1750 are attributed to human 
activities in the industrial era. Concentration 
units are parts per million (ppm) or parts per 
billion (ppb), indicating the number of 
molecules of the greenhouse gas per 
million or billion air molecules, respectively, 
in an atmospheric sample (Forster et al., 
2007). 

 
UAS have already been used to directly sample GHG emissions, sometimes for 

industrial applications such as detecting CH4 leaks along pipelines or over landfill 

sites (Barchyn et al., 2017; Emran et al., 2017), or for sampling CH4, CO2 and water 

vapour to help with climate modelling in remote or dangerous areas, such as over 

forest fires (Berman et al., 2012). This direct sampling method requires complicated 

GHG specific detectors, so an alternative method is to use optical sensors to map 

features on the ground that have known GHG fluxes (the exchange of gases). This 

spatial information can then be used to upscale and identify the total GHG flux for 

the area surveyed, as Davidson et al. (2017) showed when using high resolution 

satellite data to map arctic tundra vegetation, to allow for the upscaling of CH4 

emissions. 

 
This exploratory chapter address the 4th objective of this PhD projects as it 

highlights two case studies that investigated the classification of microtopography 
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from two different land use types (forestry and grasslands), to allow the upscaling 

GHG emissions. The studies were both in collaboration with other researchers who 

were specialists in the field of climate change mitigation and adaptation, and whose 

data forms part of ongoing analysis. Therefore, these studies do not go into the 

technical aspects of upscaling the actual GHG emissions but concentrate on the 

utility of the UAS in classifying the microtopographical features of interest. 

 

7.2 Experimental case study 1 – Classifying 
microtopographical features across an area of clear fell 
forestry 

7.2.1 Introduction 
Earlier on within this PhD project the opportunity arose to test the UAS over a large 

area of clear felled forestry as part of the GREENHOUSE project (Generating 

Regional Emissions Estimates with a Novel Hierarchy of Observations and 

Upscaled Simulation Experiments), a NERC funded project in collaboration with 

colleagues from York University, The University of Edinburgh, Forest Research and 

others, investigating greenhouse gas emissions over a range of managed habitats 

(GREENHOUSE, 2018). This project was primarily to identify GHG emissions (CO2, 

CH4 and N2O) following the felling of a mature Sitka spruce (Picea sitchensis) stand 

in an upland forest in northern England (Harwood forest). 

 

GHG fluxes were captured using traditional (e.g. static sampling chambers and eddy 

covariance towers) and novel gas sampling equipment such as the skyline system, 

an automated sampling system that can sample gases continuously (day and night) 

at varied points across an 18 m transect (Keane, 2015). This sampling revealed 

differences in emissions from different microtopographical features, such as at the 

top of a ridge and the hollow between two ridges (the ridges were formed as part of 

the planting process of the trees), as well as within ditches and between wet and dry 

areas of soil.  

 

7.2.2 Aim of the case study 
This experimental case study details the steps used to create a classified 

microtopography of a region of a clear-felled forest, to enable estimates to be made 

with regards to the level of greenhouse gas emissions that emanate from clear-

felled areas. The report details the classification method, result and accuracy of the 
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classification, but does not indicate the upscaling of GHG emissions, as this area of 

research was handled by other members of the GREENHOUSE project and is still 

under development. 

 

7.2.3 Methods 

7.2.3.1 Aerial data collection 
All data was collected on the 30th June 2015 (prior to Skyline installation), under 

mixed cloudy/sunny conditions and using the custom-built multi-rotor UAS and 

sensor package as indicated in chapter 3. Approximately 30 ha of the clear-felled 

area was selected to be surveyed, as this covered the intended locations of the 

various GHG measurement installations (figure 7-2). This was achieved via three 

separate flights at 115 m AGL, to capture imagery at a GSD of ~3.2 cm per pixel 

and with an image overlap of 78 % and side overlap of 60%. The UAS was flown at 

a speed of 5 m/s and collected 253 images in total (per camera). 

 

 
Figure 7-2: (A) The entire area covered by the UAS, Harwood Forest, 
Northumberland, England (June 2015); (B) example of detail visible showing 
automatic gas sampling chambers and ancillary equipment; (C) DSM of a section of 
the site showing ditch lines (East-West) and ridge and hollow lines (North-South). 
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7.2.3.2 Ground control point data collection 
To ensure accurate positioning of the aerial data in relation to the ‘SkyLine’ system, 

eddy covariance measurement tower and other GHG measurement installations, 

GCPs needed to be dispersed evenly across the area to be surveyed. Unfortunately, 

there were only a limited number of GCPs available (orange discs of 20 & 30 cm 

diameter) so some were moved for each flight so that at least 10 would be visible 

within each 10 ha section surveyed, ensuring that each individual flight’s data could 

still be used independently in case of failure during any single flight. The position of 

each GCP was noted with a Garmin eTrex 10 handheld GNSS (Garmin International 

Inc, Kansas, USA) and the most prominent (i.e. the larger GCP’s that had been 

positioned on tree stumps) were surveyed again a month later using a Leica GPS 

1200 survey grade RTK GPS (Leica Geosystems, Heerbrugg, Switzerland) with an 

expected accuracy of ±2 cm (Leica, 2008). In total 16 GCPs that had been surveyed 

with the high accuracy GNSS were visible across the area surveyed and available to 

be used for image processing. 

 

7.2.3.3 Image processing and orthomosaic co-registration 
Image pre-processing was carried out as indicated in chapter 3 however 

normalisation was not performed. The data was processed using Agisoft Photoscan 

(v1.2.5; Agisoft LLC, St. Petersburg, Russia), using the highest possible settings 

(image alignment highest; dense cloud ultra-quality; depth filtering mild) and 

optimised using the 16 GCPs dispersed throughout the scene surveyed (using an 

estimated accuracy of 0.15 m). Each complete dataset took ~12 hours to process, 

creating a linear red, green, blue (RGB) orthomosaic, a digital surface model (DSM), 

and a linear near infra-red (NIR) orthomosaic, and an orthomosaic enhanced for 

improved visually clarity (VIS). 
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Due to the use of much higher accuracy GCPs, the co-registration of the unmodified 

and modified cameras appeared to be effective when viewing clear features such as 

vegetation or ditches or relatively flat features and wet areas. However, alignment 

seemed poorer over piles of brash (raised features of broken tree trunks and 

branches), possibly due to the much nosier imagery created by the modified camera 

causing differences in the depth reconstruction of these features compared to the 

unmodified camera. Attempts to remedy this using ArcGIS (v10; ESRI, Redlands, 

USA) were not successful, so co-registration remained as it was originally 

processed. 

 

7.2.3.4 Feature classification 
The original intention for the classification method was to attempt to automatically 

classify features of interest across the entire area surveyed, however difficulties 

were encountered in trying to identify ridges and hollows effectively, so a smaller 

area was chosen that could be classified by hand (manually) using ArcGIS, so that it 

could be used as an initial assessment of the potential for upscaling GHG emissions 

(see appendix G for the report of this process in more detail). 

 

A rectangular region of interest (ROI; figure 7-3) was chosen that was large enough 

to encompass the intended location of the skyline system, a tower installation 

housing an eddy covariance system and the mean GHG flux footprint sampled from 

this tower. This GHG flux footprint data was supplied by Forest Research and is 

indicative of the GHG fluxes for which 50% came from an area within 200 m from 

the eddy covariance tower at a wind direction of 220-260 degrees (Xenakis, 2016). 
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Figure 7-3: Overview of the area selected as a ROI (red box), ~2.1 ha; Also 
indicated are the locations of the flux tower (pink square), skyline system (red 
dots) and other gas sampling locations. 
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The four main microtopographical features to be classified were the ridges, hollows, 

drainage ditches and wet ground, however other features were present, such as 

vegetated areas and features covered by brash mats (the offcuts and woody residue 

of the harvesting operation that are used to create a track for the harvesting 

machinery to operate from). Therefore, they were also included in case they could 

be of value in later analysis and in total thirteen features of interest were identified, 

as indicated in table 7-1. 

 
Table 7-1: Explanation of the features for each of the 13 classes. 

Class (abbrev.) Explanation of class 

Brashed Ditches (BD) 
Drainage ditches that had a brash mat 
overlying them. 

Vegetated Ditches (VD) 
Drainage ditches that cut through vegetation 
or had vegetation within them. 

Ditches (D) Drainage ditches. 

Brashed Rough Ground (BRG) 
Uncultivated ground that had a brash mat 
overlying it. 

Vegetated Rough Ground (VRG) 
Uncultivated ground that had growing 
vegetation. 

Rough Ground (RG) 
Uncultivated ground. 
 

Brashed Ridges (BR) 
Ridges used for tree planting that had a 
brash mat overlying them. 

Vegetated Ridges (VR) 
Ridges used for tree planting that had 
vegetation growing on them. 

Ridges (R) 
Ridges used for tree planting. 
 

Brashed Hollows (BH) 
Hollows between ridges used for tree planting 
that had a brash mat overlying them. 

Vegetated Hollows (VH) 
Hollows between ridges used for tree planting 
that had vegetation growing on them. 

Hollows (H) 
Hollows between ridges used for tree 
planting. 

Wet Ground (WG) 
Any area of ground that appeared to be wet 
or was standing water (but was not a ditch). 
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7.2.4 Results 
The 13 classes were resolved from the manually classified layers of the drainage 

ditches, ridges, rough ground, vegetated areas, brash mats and wet ground to 

produce a final classification of the entire ROI (figure 7-4). 

 

 
Figure 7-4: Final classification of ROI into 13 separate classes. 

 
  



  

191 
 

7.2.4.1 Classified area and percentage cover of ROI 
The total area of the ROI is ~2.1 ha and the area and percentage cover of each 

class can be seen in table 7-2. 

 
Table 7-2: Total area and percentage cover of each class 
within the ROI. 
 

Class Total Area (m2) Ground Cover (%) 

BD 66.85 0.32 

BH 3091.28 14.85 

BR 3921.94 18.84 

BRG 8.52 0.04 

D 561.34 2.70 

H 3540.58 17.01 

R 4746.46 22.81 

RG 365.50 1.76 

VD 46.80 0.22 

VH 291.79 1.40 

VR 341.52 1.64 

VRG 2203.91 10.59 

WG 1625.23 7.81 

TOTAL 20811.73 100.00 
 

 

7.2.4.2 Classification accuracy 
In order to give a level of error to the accuracy of the classification, 650 randomly 

placed points were created within the ROI and classified visually using the same 

class types of the main classification. These points were then compared against the 

main classification, creating an error matrix (table 7-3) that could be used to give an 

indication of accuracy using kappa (Ǩ) statistics (eq. 7-1). The overall accuracy was 

79%, with Ǩ = 0.75, indicating a good level of agreement. However, some classes 

showed lower user or producers accuracies because a lot of the ridges and hollows 

contained brash even though they were not covered by a brash mat. 

 

Ǩ =
𝑃𝑜 − 𝑃𝑐

1 − 𝑃𝑐
 

 

(7-1) 

Where 𝑃𝑜 represents actual agreement and 𝑃𝑐 represents chance agreement (Weih 
et al., 2010). 
 
  



  

192 
 

Table 7-3: Error matrix of all 13 classes (PA = Producers Accuracy; UA = Users 
accuracy). 

 

7.2.5 Discussion and conclusions 
The terrain at the Harwood Forest site was extremely challenging simply due to the 

amount of debris left after the clear-fell operation (figure 7-5). Although each flight 

only took ~13 minutes, over an hour was required to lay out and retrieve the ground 

control points for each survey. The full area of clear-felled forestry under 

investigation was larger than the section captured in this case study (~45 ha of just 

clear-fell), so a fixed wing UAS would potentially have been a better choice to use 

as UAS of that type are likely to be able to capture the entire area within a single 

flight (Dvořák et al., 2015). However, the terrain itself would make it very difficult to 

land a fixed wing UAS without damage, which shows one of the benefits of using a 

multirotor design, as its VTOL capability meant it required a minimal amount of 

space to operate from. 

  

  
Producer (what was visual observed) 

  

 
 BD BH BR D H R RG VD VH VR VRG WG Total UA 
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BD 1 0 0 0 0 0 0 0 0 0 0 0 1 1.00 

BH 0 110 0 0 1 0 0 0 0 0 0 0 111 0.99 

BR 0 0 117 0 0 0 0 0 0 0 0 1 118 0.99 

D 1 0 0 14 1 1 0 3 0 0 0 0 20 0.70 

H 0 50 0 2 59 10 0 0 1 0 0 7 129 0.46 

R 0 2 33 0 7 91 0 0 0 0 0 3 136 0.67 

RG 0 0 0 0 0 0 16 0 0 0 0 1 17 0.94 

VD 0 0 0 0 0 0 0 2 0 0 0 0 2 1.00 

VH 0 0 0 0 0 0 0 0 6 0 0 1 7 0.86 

VR 0 0 0 0 0 0 0 0 0 12 0 1 13 0.92 

VRG 0 0 0 0 0 0 1 0 0 0 57 2 60 0.95 

WG 0 1 3 1 1 0 0 0 0 2 1 27 36 0.75 

 
Total 2 163 153 17 69 102 17 5 7 14 58 43    

 
PA 0.50 0.67 0.76 0.82 0.86 0.89 0.94 0.40 0.86 0.86 0.98 0.63    
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Figure 7-5: The UAS in flight over the gas sampling towers and difficult terrain of the 
clear-fell area at Harwood Forest. 
 
The actual GHG upscaling methods were investigated by other members of the 

GREENHOUSE project group and therefore not reported in this case study, but the 

intention was to use the classification results to show the microtopographical 

features that are important for GHG flux modelling, allowing the spatial and temporal 

distribution of GHG emissions to be understood. Summary results detailing the GHG 

measurements taken and proposed methods of upscaling the GHG emissions were 

presented at the EGU General Assembly Conference 2016 by members of the 

GREENHOUSE project (Toet et al., 2016), however more research is needed before 

it can be said to be a robust solution as considerable differences were found 

between methods attempted (Toet, 2016). 

 

Despite being a manual process, the accuracy of the classification was not as 

effective as expected. This was mainly due to set widths being used for certain 

features (e.g. ridges were set to be 1 m wide), which in fact varied a lot more than 

expected. Likewise, many more features were covered with brash out with the areas 

that were covered by brash mats, causing further misclassification. The manual 

classification itself was a laborious process and took several days of GIS work to 

complete, so identifying ways to automate the process would be required before 

trying to apply the method to an area larger than the ~2.1 ha of this case study. 

 

However, a recent study by Lovitt et al. (2018) shows that automatic classification of 

microtopographic features such as ridges and hollows is possible, as they also used 

a multirotor UAS to survey the microtopography of a peat bog in Northern Alberta, 

Canada, in order to identify hummocks and hollows across the site. They pre-

classified the scene to remove large features such as trees from their digital 
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elevation model (DEM), before creating a reference surface using a low-pass filter 

against their modified DEM, allowing features below this surface to be classified as 

hollows and above as hummocks. These microtopographical changes gave 

indications to differences in the level of the water table across the site, which in turn 

relate directly to CH4 emissions as more CH4 is release if the water table is at or 

near the surface (Lovitt et al., 2018). Although Lovitt et al. (2018) were also unsure 

of the accuracy of their CH4 flux estimates, their method of automatically classifying 

microtopographical features derived from a UAS seems worth pursuing further. 

 

7.3 Experimental case study 2 – Classifying urine patches 
across a crop of grass being grown for silage 

7.3.1 Introduction 
Further collaborative research was also undertaken with a fellow colleague at SRUC 

(Juliette Maire) who was investigating the variability of nitrous oxide (N2O), ammonia 

(NH3), and nitrate (NO3
−) emissions within grazed fields due to the deposition of 

faeces and urine from livestock. The deposition of these extra nutrients causes 

patches of grass within the field to appear taller and lusher, and they emit differing 

levels of GHG compared to other areas in the field. These emissions were being 

measured using static gas chambers at strategic positions within the field (i.e. over 

areas with and without patches), but to upscale the data and estimate the variability 

across the whole field, these patches needed to be mapped. 

 

7.3.2 Aim of the case study 
This experimental case study highlights how and why the UAS system was used to 

enable mapping of urine patches, but does not go into detail regarding the actual 

method of urine patch classification or the method of upscaling GHG emissions, as 

this research was conducted by Juliette Maire herself as part of her ongoing PhD 

(variations of which are still being developed for her research). 

 

7.3.3 Methods 

7.3.3.1 Aerial data and ground control point collection 
The custom-built multi-rotor UAS and sensor package as indicated in chapter 3 was 

deployed over a field site to the South West of Edinburgh on the 6th June 2016 

(figure 7-6) under full sun conditions. Approximately 5 ha of the field was surveyed 

at 35 m AGL to provide imagery at ~1 cm GSD with an image overlap of 60 % and 
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side overlap of 80%. The speed of the UAS was limited to 2 m/s to allow for the 

integration time of the cameras. Four flights in total were required to cover the entire 

area, and as the area sloped from North-West to South-East, two take off positions 

were used to ensure a more even GSD across the site. 12 GCPs were used (the 

collars of each of the static gas chambers) to provide georeferencing and were 

measured using the Piksi (Swift Navigation, San Francisco, USA) real-time 

kinematic GPS with an expected accuracy of ±8 cm. 

 

 
Figure 7-6: (A) Overview of entire field surveyed showing GCP points (red stars) 
(West of Edinburgh, Scotland, June 2016); (B) detail inset showing urine patches 
(darker green) and one of the gas sampling rings used as GCPs; (C) NDVI output 
of the same detailed inset, showing urine patches more clearly (grey/white). 
 

7.3.3.2 Image processing and orthomosaic co-registration 
Image pre-processing was carried out as indicated in chapter 3 however 

normalisation was not performed. The data was processed using Agisoft Photoscan 

(v1.2.5; Agisoft LLC, St. Petersburg, Russia), using the high settings (image 

alignment highest; dense cloud high quality; depth filtering mild) and optimised using 

the 12 GCPs dispersed throughout the scene surveyed (using an estimated 

accuracy of 0.15 m). A linear red, green, blue (RGB) orthomosaic, a digital surface 

model (DSM), a linear near infra-red (NIR) orthomosaic, and an orthomosaic 

enhanced for improved visually clarity (VIS) were produced. Co-registration between 

the different orthomosaics was visually checked and appeared to be effective and so 

was left as originally processed. 
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7.3.4 Urine patch detection method and results 
The method for identifying urine patches within the field used an unsupervised pixel-

based classification method employing K-means clustering (Jain, 2010), and was 

created using a custom-made algorithm within the open source statistical analysis 

program R (R Core Team, 2018). Five 15 x 15 m (225 m2) sections of the field were 

processed using this algorithm as a proof of concept, resulting in the effective 

detection of urine patches (figure 7-7), allowing upscaling of urine patch N2O 

emissions across the scene surveyed. 

 

 

Figure 7-7: Examples of results from urine patch detection script on a 15 by 15 m 
square of grassland; (A) RGB image; (B) K-means clustering results; (C) selected 
cluster; and (D) patch isolation results (Maire et al., 2018). 
 

The algorithm and method for upscaling GHG emissions were devised by Juliette 

Maire as part of her ongoing PhD project, so full details of the process and results 
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are not indicated in this case study. However, a full explanation of the methods 

employed, and results obtained can be seen appendix H, as the successful results 

of this exploratory analysis were published in Frontiers in Sustainable Food Systems 

(Maire et al., 2018). 

 

7.3.5 Discussion and conclusions 
Identification of livestock waste deposition has traditionally involved large amounts 

of manual work, requiring 24-hour surveys to observe the livestock and map any 

deposition as it occurs (Auerswald et al., 2010; Dennis et al., 2011). Alternatives to 

this require the use of devices fitted to the livestock themselves, such as GNSS 

collars and thermal sensors to detect and note the positions of each urination event 

as the livestock move around the field (Betteridge et al., 2010), or flow rate sensors 

to identify the volume and urinary nitrogen concentration of each urination event 

(Misselbrook et al., 2016).  

  

These methods can supply valuable information on urination events but are only 

applicable to small scale studies due to their costs and difficulty in setting up, so 

being able to view at a wider scale is required. Remote sensing of urine patches 

using a UAS should be able to provide this, as Dennis et al. (2013) demonstrated. 

However, the UAS used by Dennis et al. (2013) was piloted manually and image 

analysis was also conducted manually using RGB images directly off the camera 

(i.e. not orthophotos). Their results were promising, as the method was much faster 

and allowed more precise measurements of the distribution and shape of urine 

patches compared to traditional manual methods. 

 

The results of this experimental study also showed promise (see Maire et al., 2018) 

and the method itself is an evolution of that initiated by Dennis et al. (2013). With 

further refinement of the algorithm or use of other image analysis techniques such 

as OBIA, it should prove effective in allowing the rapid detection of the development 

of urine patches and the deposition of dung over field scale areas. However, 

although this study was focused on GHG emissions due to deposition of livestock 

waste, it also highlights the multidisciplinary advantages that using a UAS can bring 

to grassland management. 
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For instance, the patches being monitored within this study could also be of benefit 

within precision agriculture as there would be no need to apply extra fertilizer to 

these areas. Therefore, the data could be used as part of a prescription map for 

variable rate fertilisation (a map detailing the required fertilizer input), thereby 

reducing input costs for farmers (Roten et al., 2017). Likewise, if attempting to 

mitigate the GHG emissions from these patches, the locations of each patch could 

be used to enable targeted application of urease inhibitors (reducing NH3 

emissions), as Bates & Quin (2013) highlighted using small unmanned ground 

vehicles (UGV). 

 

Other areas could include the identification of optimum livestock stocking density 

(Dennis et al., 2011) and acceptability of the pasture to livestock could also be 

modelled, as dung patches are often avoided by cattle (Dittrich & Helden, 2012). 

Finally, as these dung patches are often avoided by livestock, they therefore grow 

taller than the rest of the sward and can become home to different assemblages of 

arthropods. Knowledge of the size and distribution of these patches would be of 

great interest to ecologists, enabling them to better understand the diversity of 

grassland ecosystems (Dittrich & Helden, 2012).  

 

7.4 Concluding remarks 
This chapter shows further evidence for the 4th objective of this PhD project as both 

exploratory case studies show the potential utility of the UAS system as a tool to 

allow the upscaling of GHG emissions, though the identification of 

microtopographical features from varied land uses. Undertaking these studies also 

showed areas where the UAS system could be improved. For instance, for the urine 

patch detection study, two take off positions were used to ensure a more even GSD 

of the imagery captured, due to the field sloping relatively steeply (there was ~20 m 

difference in ground height from one side of the field to the other). If the UAS system 

had been equipped with the facility to actively track the terrain beneath it (e.g. 

though the use of a laser ranger finder) then this would not have been required. 

Although a minor issue for this particular study, it could be of use for future studies 

as it would further reduce the complexity of capturing imagery across undulating 

terrain (as is often encountered). 
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Likewise, the case study surveying the area of clear-felled forestry highlighted the 

difficulty of conducting surveys across uneven and broken ground. The total flight 

time required to capture imagery of ~30 ha of clear-felled forest was less than 45 

minutes, but more than 3 hours was required to lay out and retrieve the GCPs. If the 

UAS had been equipped with a high accuracy RTK GNSS then this step may not 

have been required, resulting in a considerable saving of time. Finally, these studies 

also highlighted other potential applications where the UAS and sensor package 

could be applied, indicating that the UAS could provide utility to multiple areas of 

land-use management. 

 
  



  

200 
 

 
  



  

201 
 

Chapter 8. Discussion and conclusion 
This thesis has demonstrated the creation and testing of a UAS and its sensor 

package, which could then be deployed for a number of different land-use 

scenarios. Whenever embarking on a project with the intention of using a UAS, one 

must always remember that the aircraft itself is just an aerial platform that enables 

the capture of aerial data and creating a UAS from scratch should not be seen as a 

barrier to entry. UAS are a rapidly developing technology and the market for pre-

built ‘ready-to-fly’ (RTF) UAS has expanded considerably since this project began, 

with over 2 million consumer (referred to as personal in figure 8-1) and 174,000 

commercial UAS estimated to have been sold worldwide in 2016 (Standage, 2017; 

Garrett et al., 2018; figure 8-1). 

 

 
Figure 8-1: Number of UAS manufactured (in 
millions) by year; 2015 and 16 are estimates 2017-
2020 are forecasts (Standage, 2017). 

 
Consumer UAS will include a large number of very small aircraft that are essentially 

toys, however companies such as Da-Jiang Innovations (DJI), who currently 

dominate the consumer drone industry (Standage, 2017; Bateman, 2017), produce 

a wide range of effective RTF multirotor UAS equipped with built in cameras that 

can perform a variety of roles, with aerial videography as their main selling point, but 

with the capability to also perform aerial photography and therefore surveying as 

well. Other companies such as SenseFly and QuestUAV are more solidly in the 

commercial market, producing both multirotor and fixed wing designs, with far more 

emphasis on their ability as survey platforms to support industries such as 

agriculture, construction and mineral resource extraction. 
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The evolution of consumer grade UAS has allowed many researchers to access 

UAS technology and apply it to different research areas, such as Wei et al. (2017) 

using a DJI Phantom 4 Pro to monitor structural changes to agricultural terraces in 

Southwest China, and Hill et al. (2016) using a DJI Phantom 3 Pro to survey for the 

invasive plant yellow flag iris (Iris pseudacorus L.)  in British Columbia, Canada. The 

author of this thesis has also used a DJI Phantom 4 (DJI, Shenzhen, China) to 

provide aerial data for undergraduate student projects investigating the 

encroachment of bracken on rough grazing land (figure 8-2a) and the quality of turf 

grass on a golf course (figure 8-2b), so their utility to a wide variety of research 

topics is very evident and their ease of use and excellent quality cameras (often 

better than those in this project) makes them ideal platforms in certain situations. 

 

 

 
Figure 8-2: Example data collected for undergraduate student projects; (A) 
identification of bracken over upland rough pasture (West of Edinburgh, Scotland, 
February 2018); (B) evaluation of turf quality over a golf course (South-West of 
Cupar, Scotland, February 2018) 
 

8.1 Custom built vs consumer RTF UAS 
Building from scratch does however have its advantages, with the most obvious 

being a better understanding of how all of the components of as UAS work together 

and therefore being able to make your own repairs should something go wrong, 

which would be useful if working in remote places (Duffy et al., 2017; Garrett et al., 

2018). Sensor integration is another area where working with a custom built UAS 

(using an open source autopilot) has its advantages over an RTF UAS, as RTF UAS 

often have tightly integrated sensors to optimise the design of the aircraft, which is 

part of what makes them appealing to operators. However, this can make the 

deployment of extra or different sensors not necessarily designed for that model of 

aircraft more difficult, which was experienced by the author of this thesis when 

B 

A 
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assisting with the setup and initial testing and operation of a UAS to be used for the 

ATEC project (Advanced Technologies for Efficient Crop management). 

 
ATEC is a joint project between the University of Edinburgh and SRUC and “aims to 

enhance the sustainable and efficient production of two major UK crops – wheat and 

potato” (ATEC, 2018). This ongoing project utilised a DJI M600 heavy lift hexacopter 

(DJI, Shenzhen, China) with an AUW of ~14 kg, that was customised to carry an 

array of sensors including a very high-resolution digital camera (42 megapixels), a 

nine-band multispectral camera, a thermal camera and a spectrometer. However, 

some difficulties were encountered with the integration of these sensors with the 

autopilot (to allow triggering), which although eventually resolved, would have been 

relatively easy to integrate with the 3DR Pixhawk autopilot used for this PhD project. 

Geofence restrictions now also exist for aircraft using DJI autopilots, which while 

practical from a safety aspect as the geofence essentially stops the UAS being used 

in areas designated as no-fly zones (e.g. around airports, prisons and power 

facilities; DJI, 2016), requires extra steps to unlock the location (i.e. direct 

communication with DJI; DJI, 2018b). This could be a hinderance for some UAS 

operators, but is something that is not currently implemented (and could be 

circumvented) when using an open source autopilot (Garrett et al., 2018) 

 
The ability to add ancillary sensors to improve the autopilot itself is also more 

accessible for custom built UAS using open source autopilots, as features such as 

rangefinders (LiDAR/Sonar) can be added relatively easy (Ardupilot, 2016c), 

allowing terrain following functions within missions (Ardupilot, 2016d) or object 

avoidance (Ardupilot, 2016e), which can be of great benefit if surveying over 

undulating ground or within confined environments (Raimundo et al., 2017). Some of 

these features are not always available in RTF UAS, so if required as part of a 

project then this should be taken into account. The differences in price between 

custom built and RTF UAS is difficult to quantify as considerably more time is 

required to both construct and test a custom-built aircraft, however if time is 

available then this author would recommend taking the custom build route in order 

to learn more about the aircraft they intend to operate, and potentially save some 

money at the same time. Whichever route is taken, the main point to remember is 

that the UAS must have the endurance and payload carrying qualities suitable for 

the aims of the project. 
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8.2 Aircraft size and weight 
The size of the aircraft used for this project was somewhat larger than was 

necessary to carry the intended sensor package, however this was to enable the 

integration of other sensors and hardware at a later date. Size is an important factor 

to consider if working in remote areas that can only be accessed by foot, as in those 

situations a smaller UAS would definitely be easier to transport compared to the one 

designed for this project (see Duffy et al., 2017 for a guide to working in varied, 

remote and challenging locations). The size of the aircraft also denotes its visibility 

and in order to be compliant with CAA VLOS regulations, as the UAS must be within 

unaided visual site at all times, which for smaller aircraft (such as the DJI phantom) 

may not be up to the recommended maximum of 500 m (CAA CAP722, 2015). The 

larger size of the aircraft designed for this project is easily visible from 500 m and 

potentially further, which could allow for an extension to the VLOS horizontal 

distance restriction if an effective safety case were to be submitted to the CAA (CAA 

CAP722, 2015). 

 
The AUW of the aircraft is directly linked to the regulations governing its use and 

staying below 7 kg AUW reduces the regulatory burden as for heavier UAS, such as 

that used for the ATEC project, prior approval from air traffic control is required if 

wanting to operate within controlled airspace (The Air Navigation Order 2016). If the 

operator has not undergone an NQE certification course to become a CAA approved 

UAS operator for a < 20 kg aircraft, then the likelihood of this approval being gained 

is slim (as was experienced by the UAS operators on the ATEC project). This 

means that large areas within the vicinity of airports cannot be operated within, as 

the control zones of many larger airports extend for several km and are valid from 

surface level upwards (figure 8-3). 
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Figure 8-3: Example VFR chart indicating an intended operating site (red arrow, 
green point) that is within Aberdeen airport control zone (pink shading), which is 
class D airspace, from surface level to 11,500 feet (amended from 
SkyDemonLight, 2018). 
 

8.3 Regulations, certification and insurance 
As indicated right at the beginning of this thesis (chapter 1), the regulations 

governing UAS operation are flexible in relation to their use for research related 

projects, and operators don’t necessarily need to be approved operators by the 

CAA. However, as Cunliffe et al. (2017) point out, many research collaborators (e.g. 

landowners over whose land you intend to operate from) now require CAA approved 

operators who are insured in case of failure of the UAS during flight. Gaining 

certification will also educate the operator in the safe operation of the aircraft, as 

most NQE courses will have a ground school element that instructs in areas such as 

interpreting visual flight rule (VFR) charts, identification of ground and aerial hazards 

as well as the regulations directly surrounding UAS operations. 

 
The author of this thesis was fortunate to be able to attend an NQE course through 

funding supplied by SRUC from the Scottish Funding Council Knowledge Exchange 

program. It entailed two days of ground school training, with an exam to ensure the 

basics had been learnt, plus a flight exam to ensure that the safety aspects of UAS 

operation (identification of airspace and hazards both on the ground and in the air) 
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were being put into practise, as well as the operator being able to demonstrate safe 

operation of the UAS itself (i.e. pilot competence). Once completed and certification 

has been achieved, an operations manual detailing how the company responsible 

for UAS operations (in this case SRUC) will operate and maintain their aircraft 

needed to be submitted to the CAA to enable accreditation and obtain a Permission 

for Commercial Operation (PfCO). 

 
As Cunliffe et al. (2017) also experienced, the operations manual is an extensive 

document and takes quite some time to complete (see appendix E) but was 

successfully created and a PfCO awarded by the CAA on 8th May 2016 (CAA ID 

2086; CAA CAP1361, 2018). The advice of Cunliffe et al. (2017) would have been 

most welcome if the study had been published a year earlier, but their study is 

definitely worth investigating to gain advice and insight on obtaining UAS 

certification, creating an operations manual and the ancillary documents that go with 

it, although recent regulation changes brought about by the Air Navigation Order 

2016 and The Air Navigation (Amendment) Order 2018 need to be taken into 

consideration. 

  
Despite the amount of time it takes to complete, obtaining a PfCO is a worthwhile 

endeavour as once obtained, the minimum operating distance to congested (i.e. 

urban) areas is reduced to just 50 m (compared to 150 m), making work near to 

such areas possible. It also allows (and requires) insurance to be obtained, which 

can be upgraded to include the aircraft and sensors and could be invaluable should 

expensive hardware be used. Finally, as a fully certified, insured and CAA approved 

UAS operator, it can allay the fears of landowners or other project collaborators as 

well as allow the possibility for commercial work should it arise. 

 

8.4 Sensors and image processing 
The sensor package created as part of this project was effective in some areas but 

certainly not ideal. They were selected because they were very low cost (< £100 for 

three cameras – one was damaged during modification – the long pass filter and the 

aluminium housing), lightweight and known to be modifiable, allowing the capture of 

NIR wavelengths of light, as well as use scripting via CHDK to capture RAW 

imagery. However, they had a very small sensor size (1/2.3 inch) which gave them 

poor results in low light conditions (essentially whenever it was vaguely cloudy), 

making the use of fixed settings for ISO and shutter speed unreliable as the images 
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would often be under or over exposed, especially during mixed environmental 

conditions (aperture was fixed and could not be altered). 

 
The use of the CHDK KAP UAV script resolved this issue, allowed images to be 

captured on command from the autopilot, reduced focusing time delay (as focus was 

set to infinity), which allowing effective image capture, as other studies have also 

reported (Glendell et al., 2017; Müllerová et al., 2017a; Szantoi et al., 2017). 

However, as the ISO and shutter speed would be adjusted during flight, further 

issues were encountered as these settings could differ from image to image within a 

single flight, with any image having an ISO value of 200 or higher being 

considerably nosier, reducing image clarity (i.e. loss of fine detail). The addition of 

the 585 nm long pass filter made this situation worse for the modified camera, as the 

filter reduced transmission of light (by ~10 %) and excluded blue and green 

wavelengths, resulting in the camera typically selecting high ISO values to gain 

desired image exposure. 

 
The use of RAW imagery also produced some challenges as these cameras, 

although capable of producing it, are not designed to do so. This meant that image 

capture was slow (5~6 seconds per image), requiring the speed of the UAS to be 

reduced to allow effective image overlap and thus reducing the area that could be 

surveyed, especially when operating at lower altitudes. For the small trial areas (1~2 

ha) surveyed in chapter 4 and 5 this was not an issue but would mean that this 

system would not be suitable to implement effectively over larger areas at low 

altitude. The RAW files produced were also considerably larger than JPG imagery, 

potentially creating an issue if storage space is limited, and require further post 

processing to be useable. 

 
The post processing routine was required to first fix bad pixels within each image 

before converting the RAW image into a linear 16-bit TIFF file. The conversion 

process used pre-made dark images to reduce dark current signal noise that would 

increase due to higher ISO and lower shutter speeds (Verhoeven et al., 2009) and 

could be altered to produce either linear TIFF images with all white balance set to a 

value of 1 or enhanced true colour images with improved highlights. The enhanced 

images were superior to their corresponding JPG image allowing more effective 

visual analysis, as Verhoeven (2010) also described. 
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However, the TIFF images produced were often still quite noisy despite the correct 

methods used (especially the modified camera), so smoothing of the imagery was 

performed to rectify this. This step may have inadvertently reduced the effectiveness 

of later image classification, as the smoothing process could reduce the textural 

quality of the images (the change in frequency and pattern of tones; Blaschke et al., 

2014), making textural measures within OBIA classification less effective. Textural 

measures were investigated as part of the classification in chapter 5 but were found 

to be ineffective in aiding the discrimination between weeds and potato vegetation, 

and this could well have been due to the image smoothing. 

 
The final step was to correct distortion in the TIFF file due to lens of the camera (as 

it was relatively wide angled) and crop the edges of the image to reduce the effects 

of vignetting (image darkening in a circular gradient from the image centre to its 

borders; Lelong et al., 2008; Lebourgeois et al., 2008). The corrections performed 

were adequate to reduce the worst areas of vignetting (the image corners and 

borders), however, to correct fully for the effects of vignetting, flat field correction 

would be required as demonstrated by Berra et al., (2017). However, this method 

may not have been practical for this project as flat field correction is only valid based 

on the camera settings used to identify it (Lelong et al., 2008), whereas the settings 

of the cameras used in this project could change between successive image 

captures. The effects of vignetting were however further reduced through the 

process of creating the final orthomosaic of the scene, as Agisoft Photoscan only 

uses a portion of each image (towards the centre of the image) to create the final 

mosaic, which will vary depending on the amount of image overlap (figure 8-4). 
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Figure 8-4: Example stitching seams from Agisoft Photoscan, showing inset 
orthophoto with proportion of image used in the final mosaic (red polygon). 
 
The true spectral qualities of the cameras were not fully tested as they were not 

directly compared to other calibrated sensors (e.g. spectrometer measurements). 

Therefore, the effects on spectral quality (positive or negative) of the image 

processing routine are not known and further experimentation would be required 

before a judgment could be made. The use of linear TIFF images created from RAW 

imagery should however provide a more quantitative measure compared to using 

JPEG imagery alone (Verhoeven, 2010; Pauly, 2014), and if the imagery had been 

calibrated against known reflection surfaces (e.g. using the empirical line method; 

Smith & Milton, 1999), then the sensor package could potentially have been used as 

a true multispectral sensor as Berra et al., (2017) and Pauly (2016) have 

demonstrated. 

 
The image brightness normalisation routine indicated in chapter 3 and used in 

chapter 5, followed the method of Troscianko & Stevens (2015) and appeared to be 

effective but again was not fully tested by comparison with other sensors. There are 

likely to have been errors in the use of this method as the camera settings could 

change during the flight, and therefore the image taken of the calibration target at 

take-off and landing (if illumination had changed considerably) may not have had the 

same settings as the images during the flight. The calibration target itself was also 

most likely not a Lambertian surface (scattering reflected light equally in all 

directions; Troscianko & Stevens, 2015), so calibration would vary depending on the 
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time of day and angle of the sun. Troscianko & Stevens (2015) method was 

essentially designed to calibrate single stills of scene to remove illumination effects 

between different captures and allow measurement of features important to visual 

ecologists. However, it was specifically geared towards the calibration of linear 16-

bit TIFF images extracted from RAW files, so was appropriate to use for this project 

but would require further testing to validate its effectiveness. 

 

8.5 Diversity of application 
From the literature review in chapter 1 an indication of the variety of scientific areas 

and different land-use types where UAS have been used can be seen. Over the 

course of this PhD project the author has also experienced the applicability of RS 

using the UAS designed for this this project for a variety of different research 

applications. For instance, simply providing high resolution backdrop imagery of an 

area being investigated can enable more context to be given to projects, such as 

that provided to SRUC masters students investigating possible contamination from 

lead mine tailings (figure 8-5a) or capturing the moment that a reservoir had been 

drawn down to its minimum water so that the bathymetry of the reservoir could be 

seen (figure 8-5b). The latter (in collaboration with Roseanne McDonald from the 

Centre for Ecology & Hydrology) would have been an event only observable for a 

very limited period of time, again showing the utility of using UAS as they can be 

deployed at short notice whenever environmental conditions are suitable (Zhang & 

Kovacs, 2012; Shahbazi et al. 2014). 
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Figure 8-5: (A) Overview and detail inset of study lead mine tailings near Tyndrum, 
Scotland (June 2016); (B) Overview and detail inset (showing DSM) of Waltersmuir 
damn near Stirling, Scotland (April 2016). 
 
Even though the sensor package designed for this project was not ideal, simply the 

ability to generate aerial images with good visual clarity can make a big difference to 

researchers who typically take all their measurements from the ground. For 

instance, during initial testing of the UAS and sensor package, different agricultural 

trials were investigated using the pixel-based thresholding method of identifying 

vegetative fraction (eq. 8-1) indicated by Torres-Sánchez et al. (2014). Both the 

early development of winter wheat (see appendix F) and oil seed rape (figure 8-6) 

trials were evaluated and although not fully explored or expanded on, experienced 

trials officers who were overseeing the trials were immediately able to get a better 

understanding of the condition of their trial plots simply from visual observation of 

the aerial data. 
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𝑉𝐹 =  
𝑃𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑎 𝑑𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎)

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 (𝑖𝑛 𝑎 𝑑𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎)
 ∗ 100 (8-1) 

 

Where 𝑉𝐹 is the vegetative fraction, the percentage of green vegetation per unit of 
ground surface (Torres-Sánchez et al., 2014). 
 

 
Figure 8-6: Example of identification of oil seed rape canopy cover, 
the vegetative fraction (West of Edinburgh, Scotland, November 
2015). 

 
Similarly, the late development of weeds within an infield trial of winter wheat was 

also explored (figure 8-7) and again got a positive reaction from the experienced 

trials officers involved. This indicated that the UAS and its sensor package could be 

useful for a variety of precision agriculture applications, and so led onto the two case 

studies looking at potatoes.  
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Figure 8-7: Example imagery of Brome (Bromus sterilis) growing through winter 
wheat within an infield trial system (North-West of Edinburgh, Scotland, June 2015).  
 
Throughout this project the UAS system and its sensor package has been applied to 

a relatively diverse range of land-uses that can be found within Scotland, including 

agricultural crop trials, grassland, forestry and riparian. These are some of the key 

areas for SRUC’s research aims but by no means all of them, as SRUC research 

aims include all rural land-use types within Scotland, including more upland areas 

such as moorland and peatbogs. Sadly, not all areas could be covered within this 

PhD project, but the general utility of the UAS system and its sensor package (as 

shown by the variety of applications already covered within this project) means that 

it could well be applied to any land-use area. 

 

8.6 Objectives summary 

8.6.1 1st Objective - Identify, assemble and test a sensor package that 
can be applied to a variety of land use areas that are key to SRUC 
research aims. 

The creational aspects of this objective were covered in the first and second 

chapters, and showed that a very cost effective, broad-band multi-spectral sensor 

can be created. However, during its application across the remaining chapters its 

faults were also revealed. Firstly, the cameras were being coerced into operating in 

ways they were not meant to (the capturing of RAW imagery) and were therefore 

slow to operate. This imposed limitations to flight planning (e.g. reducing flight 

speed), meaning that the UAS system would cover less area of ground than it 

otherwise could. Secondly, the cameras had poor low light ability due to the very 

small size of the sensor within each camera and the compact design of the lens. 

This made getting reliable image exposures more difficult without the use of the 

CHDK script to vary shutter speed and ISO, which in turn made these cameras less 
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effective to be used for quantitative spectral measurements, as getting a reliable 

calibration would be difficult. 

 

Other researchers have used modified COTS cameras effectively (e.g. Pauly, 2016; 

Sankaran et al., 2017; Rasmussen et al., 2018; Wan et al., 2018) and some have 

shown how they can be effective, calibrated, broad band multispectral sensors 

(Berra et al., 2017). Due to their broad band nature they are not as effective as 

narrow band multispectral sensors for spectral analysis, the very high resolution of 

COTS cameras, which is typically much higher than that of narrow band 

multispectral sensors (Pena et al., 2015; Pauly, 2016), gives them a larger image 

footprint, allowing for more expensive surveys. It also makes them more effective for 

creating crop surface models and detecting fine details, and therefore aiding in 

areas such as plant disease detection (Nebiker et al., 2016; Pauly, 2016, 

Rasmussen et al., 2016). Ultimately the quality of the cameras used in this project 

were not all that could be desired, however their cost (~£100) was considerably 

cheaper than any alternatives at that time, especially if compared the Parrot 

Sequoia (Parrot, Paris, France; ~£3,000), which is one of the cheapest narrow band 

multispectral cameras that has recently become available to purchase. Therefore, 

the 1st objective of this project was met, but ideally higher quality cameras should 

have been acquired. 

 

8.6.2 2nd Objective - Determine the UAS requirements of key SRUC 
research aims, and design, build and test an appropriate UAS that 
can accommodate the sensor package. 

The design ethos for this projects UAS was to ensure that it could; a) carry the 

sensor package that had already been created; and b) be as flexible as possible for 

carrying other sensors or equipment in the future, up to an AUW of 7 kg. This 

practically mandated the use of a multirotor type of airframe, as its ability to work 

within contained areas and fly both very low and slow would work better with the 

sensor package and give it far more utility compared to a fixed wing design. A fixed 

wing design would have given far more endurance (Dvořák et al., 2015), however at 

a potential AUW of 7 kg, such a design would have also needed extra ground 

equipment to get airborne (e.g. a catapult launcher). 

 

Creating a quadcopter design with larger motors and propellers would have 

increased the endurance of the UAS (perhaps up to 20 minutes or more), however 
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the security given by the extra motors of the octocopter were favoured due to its 

potential future application with more expensive sensors. In total ~27 hours of actual 

flight time were logged during this project (144 individual flights), and no significant 

issues were encountered (i.e. hardware failures), indicating that it is a robust design. 

However, its physical size does reduce its practical use in locations that cannot be 

easily accessed with a vehicle (Duffy et al., 2017), which could be a limitation for 

some of SRUC’s aspirations for environmental work in more remote locations. 

Overall, the design, build and application of the UAS was successful, meeting the 

aims of the 2nd objective, and the UAS is still in use to this day. 

 

8.6.3 3rd Objective - Determine software requirements linked to sensor 
and data requirements, and design appropriate data processing 
workflows. 

As the sensors used in this project were producing RAW imagery, they had to be 

converted into a more useable form for further analysis. This was achieved through 

the use of a custom script, to both convert the images into linear 16-bit TIFF files, 

whilst attempting to correct areas of noise (e.g. bad pixels, dark current and 

distortion). Although a bit slow, this process was fully automated and gave data sets 

that were more useful for further analysis than the native JPG imagery from each 

camera alone. This area of imager pre-processing was successful, except that the 

smoothing steps may have reduced the textural quality of the images, reducing the 

ability to use that aspect effectively for later image classification. 

 

The processing of the converted images into orthomosaic datasets using 

photogrammetry software based on SfM techniques (e.g. Agisoft Photoscan) was a 

semi-automatic process that is the preferred method in use by many researchers 

using UAS (e.g. Bendig et al., 2015; Jensen & Mathews, 2016; Müllerová et al., 

2016). The main area of improvement that would make the process almost 

completely automated would be the ability to capture imagery with very high 

accuracy GNSS information, as this would likely have negated (or reduced) the use 

of GCPs to allow effective georectification. Some researchers have already shown 

that this is possible (Du et al., 2017; Forlani et al., 2018; Tomaštík et al., 2019) and 

some of the latest commercially available UAS have this facility built, such as the 

DJI Phantom 4 RTK (DJI, Shenzhen, China), however the cost of such systems is 

very high (~£5,000). This could be a price worth paying however, as the precision 
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given would not only reduce human operator time processing the imagery, it would 

also reduce the time required in the field to deploy and retrieve the GCP. 

 

Analysis and classification were performed using a mixture of pixel based and OBIA 

techniques, along with modelling using GIS software. As Blaschke, 2010 and others 

(Kelcey & Lucieer, 2013; Torres-Sánchez et al., 2015) have indicated, OBIA image 

analysis is the preferred method to use for very high resolution imagery, due to the 

spectral changes that can be seen at this level of detail resulting in ‘salt and pepper’ 

noise if single pixels are analysed independently. The other main advantage of 

OBIA software is the ability to combine several data layers at the same time (e.g. 

orthomosiac, height model and thematic layers, such as the position of crop rows). 

Theses layers, along with object size, shape, texture and location of objects to other 

objects (or features), can then all be used to aid in the final classification of the 

scene surveyed. 

 

Although fully featured and freely available, the OBIA software Interimage (Camargo 

et al. 2012) was not the ideal software to use, primarily due to the limitations in the 

sizes of imagery that could be used with it, meaning that the data had to be split up 

and processed independently. This made processing both slow and caused 

classification errors. Trimble eCogniton was a far superior OBIA product, and 

although not free (an academic license cost ~£3,000), it did not have any of the 

limitations of Interimage and if it had been available earlier in this PhD project, then 

the results from chapters 4 and 6 could well have been improved. Overall, the 

requirements for the 3rd objective were met, however the effectiveness of image 

normalisation (which was only applied for the 5th chapter) were not fully assessed 

and may well have not been effective if trying to rely on spectral measurements 

alone for time series analysis of data. 

 

8.6.4 4th Objective - Through collaboration with existing projects, 
demonstrate the utility of UAS acquired data to these projects by 
addressing specific questions within those projects. 

The 4th objective was met through the aims of the five different case studies that 

made up chapters 4-7, a summary of each indicated in the following sections. 
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8.6.4.1 Agricultural applications - disease detection 
The aim of this case study was “to identify if a UAS equipped with COTS cameras 

can detect and map the onset of disease within a crop of potatoes, with an effective 

level of accuracy”. Other studies have investigated the development of disease 

within a potato crop, namely the onset of late blight (Franceschini et al., 2017; 

Sugiura et al., 2016) as well as detecting its possible arrival from the air (Techy et 

al., 2008), but none so far (to the authors knowledge) have investigated blackleg 

disease caused by Pectobacterium spp. The early detection of this disease (and 

removal of infected plants) is important as it can spread to neighbouring plants or 

infect progeny tubers (Toth et al., 2003; Charkowski, 2015) and its presence within a 

potato crop can affect the certification of potential potato seed being produced, 

thereby resulting in financial loss for farmers (SASA, 2017). 

 
Due to the likely spectral issues with the sensor package, this study focused on the 

structural aspects of the plants, to identify if the onset of disease could be detected 

through a reduction in canopy growth, height or volume, when compared with the 

mean measurements of the plant population as a whole. This required the modelling 

of each plant over time, with the detection of an emerged plant being the initial point 

to monitor from. The use of Thiessen polygons to denote plant growth space and 

monitor the development of each plant individually is also novel from the perspective 

of RS from a UAS and despite issues encountered due to alterations in position of 

orthomosaics between dates, the measures used with the automatic method 

produced a good estimation of the onset and development of disease within the trial 

(overall accuracy 92 %, producers and users accuracy 85 % and Kappa 0.79). 

 
The results cannot be directly compared with another study, as the closest the 

author identified would be that of Sugiura et al. (2016), who used a standard digital 

camera on their UAS to assess the development of disease (late blight). They 

employed a pixel-based method but did not use height (structural) data, and they 

only produced a severity rating per plot and not per plant. However, whilst they had 

good results that also compared well with ground-based measurements they also 

encountered issues with the canopy of certain plants encroaching on their 

neighbours, causing errors in their estimation of disease severity, which highlights 

the need to find ways of tracking and separating one plant from another. 

 
The methods employed in this study are essentially the initial foundations of a 

disease detection model and could most likely be improved through the use of 
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further spectral measures using calibrated multispectral imagery, as changes in leaf 

pigment (e.g. chlorophylls) could then also be monitored (Franceschini et al., 2017). 

However, despite the study by Franceschini et al. (2017) using a hyperspectral 

imager onboard a UAS to detect the early stages of blight development, they still 

found that structural changes in the plants (e.g. loss of canopy) were a more 

important indicator of disease compared to the spectral measurements alone. 

 

Over areas larger than the small trial of this study, surveying with a UAS using the 

methods outlined in this study would be considerably quicker than a full ground-

based assessment, and the disease maps produced would help focus the efforts of 

potato inspectors and roguers. However, one issue remains that cannot be avoided, 

in that regular surveys are required, ideally more than once a week. Further work 

should be undertaken to reduce this requirement though the identification of each 

plant even when intra and inter row closure has occurred (perhaps through height 

analysis), as this requirement for regular surveys could be overly burdensome, as 

Hunt & Rondon (2017) also highlighted when they used daily images from a UAS to 

detect damage to potato plants from a Colorado potato beetle (Leptinotarsa 

decemlineata) infestation. 

 

Improvements could also be made with more accurate orthomosaic and DSM 

positioning between survey dates (e.g. though the use of onboard high accuracy 

GNSS) and refinements to the image classification process, by using more effective 

image analysis software. However, overall the aim of this case study was met as the 

results indicate an effective level of disease detection, but the actual type of disease 

was not discerned in this case. Knowing what other plant stressors (biotic and 

abiotic) are present (or likely) would be important in quantifying disease severity, 

something that Duarte-Carvajalino et al. (2018) also indicate from their study 

investigating late blight. 

 

8.6.4.2 Agricultural applications - trials analysis 
The aim of this case study was “to identify if a UAS equipped with COTS cameras is 

able to detect the emergence and change in canopy cover of potato plants to the 

same fidelity as that of traditional ground-based techniques”. Conducting trials 

analysis of potatoes is a relatively time-consuming activity from the ground so simply 

speeding up the process would be worthwhile. As would enabling a more 
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standardised methodology, as measures taken from the ground (especially for 

canopy cover estimation) can be subjective and will vary from person to person, as 

Sugiura et al. (2016) also encountered with ground-based assessment of blight. This 

study tried to address these issues by utilising the plant growth model developed for 

disease detection, but outputting on a per row (or plot) basis rather than per plant, to 

match that of ground-based observations. 

 
The emergence detection method employed initially for disease detection did not 

fare well with this larger trial and even when updated to make it more robust, it still 

lagged behind the observations made from the ground. To give the model autonomy 

it would need to be improved by taking into consideration environmental factors that 

could alter the growth rate of plants (e.g. temperature, rain, nutrient application), as 

this would allow the growth rate per day to be varied rather than the fixed 2 cm per 

day that was implemented. However, the resolution of the imagery was not fine 

enough to detect shoots as they emerged, and the slightly irregular plant spacing 

plus the development of weeds led to an increase in false positive and negative 

results. The latter two factors, both of which are suboptimal conditions for typical 

potato development (Bussan et al., 2007), were not encountered by Sankaran et al. 

(2017), who also investigated emergence within a potato crop using a UAS 

equipped with a modified digital camera. However, weed development was 

encountered by Gnädinger & Schmidhalter (2017), were the presence of weeds 

reduced accuracy when trying to count maize plants, and by Li et al., (2019), who 

also indicted some miscounting of emerging potatoes due to the presence of weeds. 

 
Sankaran et al. (2017) showed significant correlation between UAS and manual 

emergence counts (r > 0.8 for two different varieties) which was better than the best 

result of this trial (r = 0.47 for the Maris Piper variety), although this difference could 

be attributed to the poor plant spacing and weed development, as the visual 

analysis of the Maris Piper varieties also gave a significant and highly correlating 

result (r = 0.94). Sankaran et al. (2017) also reported difficulties in detecting 

emergence once intra-row canopy merging had occurred, which the model in this 

study could overcome to a point. Li et al., (2019), used a standard digital camera to 

capture emerging potatoes using a pixel-based approach, but only from a single 

survey (at ~50% emergence). They indicated a high level of correlation between 

manual and UAS acquired emergence (R2 = 0.96), however they may have been 

fortunate in capturing imagery at the perfect time (when the majority of plants were 
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distinct from each other) as they also indicated under and over estimation of plant 

counting where neighbouring plant canopies had merged. 

 
Detection of canopy cover was more straight forward compared to emergence, 

although weeds were difficult to split from the potato vegetation, and to improve this 

a calibrated multispectral camera may prove to be more effective at being able to 

discriminate between the two, as Peña et al. (2015) reported higher accuracies for 

weed detection using such a system compared to a COTS camera. Peña et al. 

(2015) also used an OBIA approach for their classification of weeds, highlighting the 

applicability of this method when dealing with the very high-resolution imagery 

produced by UAS, as others have also reported (Torres-Sánchez et al., 2015; 

Pérez-Ortiz et al., 2016). 

 
The ground cover analysis correlated significantly with the ground-based 

measurements and although the ground-based measurements were generally 

higher, the reason for this was identified due to the way those measurements were 

taken, resulting in a reduced view of the plot being measured, especially towards the 

later growth stages when the canopy is quite high. Coupled with the subjective 

nature of the ground-based measurements, the use of RS from a UAS for this 

purpose is likely to give a much more representative and standardised measure of 

each plot (if classification is effective). Further to this, as the development of each 

plant was being monitored, far more intra-plot variability could be produced. With the 

addition of height data and potentially calibrated spectral measures to identify 

chlorophyll content, a wealth of detail not typically captured from the ground could 

be supplied, but for a similar survey effort as that required for traditional ground-

based analysis. 

 

Therefore, the aims of this case study were met, and indicate that further work is 

required to improve the methods (both data capture and analysis) before the use of 

UAS gives the same results as that of traditional techniques with regards to 

emergence counting. However, for ground cover assessment, the advantages in the 

use of UAS are much more apparent, but the differences seen between the aerial 

and traditional method need to be assessed further, perhaps through the use of a 

more representative (but potentially much slower) method of quantifying canopy 

cover from the ground. 
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8.6.4.3 Environmental applications – invasive non-native species monitoring 
The aim of this case study was “to identify if a UAS equipped with COTS cameras 

can be used to effectively map the current extent of the invasive non-native species 

giant hogweed”. Monitoring the distribution of invasive species along riparian 

habitats is also a time-consuming process when performed manually and often only 

covers direct features of interest (e.g. the immediate banksides of a river) and not 

the wider area surrounding them (Harewood, 2014). A study by Hill et al. (2016) also 

highlighted that manual surveys for INNS cannot always accurately capture the full 

scale of invasion (the area covered by INNS), as the measurements are often 

coarser. This was due to both time constraints and the ability to view the area in 

depth, as their view could be obscured by other vegetation, leading to under 

estimation of the area covered by INNS. They identified that visual interpretation of 

UAS captured imagery gave the most accurate indication of the area covered by 

INNS but their automatic classification (using pixel-based methods) overestimated 

the scale of invasion. However, visual interpretation of imagery does not scale very 

well to larger areas as it will take far too much time (Hill et al., 2016), so 

improvements for their automatic classification would be required. 

 

The OBIA classification method employed in the pilot study of this thesis also over-

estimated the area of ground covered by giant hogweed but with improvements 

should become representative of the true scale of the problem, especially as a study 

by Müllerová et al. (2017b) showed an effective level of accuracy with their 

classification (which used a similar method), but only during certain phenological 

stages (i.e. when the plants were flowering). This was also noted as important by 

Hill et al. (2016), for even though the species being investigated was different, 

yellow flag iris (Iris pseudacorus L.), the flowering stage allowed more effective 

identification from surrounding vegetation. As these phenological stages can be brief 

and can vary in their timing year to year, the ability to be able to conduct a survey 

when required highlights another advantage of the use of UAS, for they can be 

deployed at very short notice. 

 

Overall, the aims of this case study were met, as it showed that the UAS and sensor 

package could be used to map the extent of giant hogweed invasion, although 

further work is required to refine the automatic classification method and bring it up 

to a similar standard of other studies. Likewise, the multirotor UAS used for this case 

study might not be the best aerial platform to use, as the increased endurance of a 
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fixed wing UAS would allow for much more expanded surveys, which Pergl et al. 

(2011) suggests is wise to do when surveying for INNS. For just this reason, the 

studies by Müllerová et al. (2017b) and Michez et al. (2016) both used fixed wing 

UAS, so further work in this area should consider focussing on identifying optimum 

survey methods using a fixed wing type of aerial platform. 

 

8.6.4.4 Experimental applications – greenhouse gas estimation upscaling 
The two collaborative exploratory studies of chapter 7 were both focussed on a 

similar goal, that of identifying microtopographical features that were linked to 

differing emissions of greenhouse gases. Due to difficulties encountered trying to 

find an automated solution, the study classifying features within clear-fell forestry 

used a manual classification approach. This gave results that were not as effective 

as expected, partly due to the method employing fixed widths for certain features, 

which was expedient but not realistic to the true conditions on the ground. 

Expediency was key for this study at that time however as manually classifying 

features by hand is a very slow process. Scaling up the process to the entire area 

surveyed would have been an arduous task (hence why it was not undertaken), so 

the development of an automatic process along the lines of that shown by Lovitt et 

al. (2018) is required to enable the effective use of a UAS for studies of this type.  

 

Likewise, for the study investigating urine patches, manual classification of the 

imagery would also have been laborious, so the pixel-based method employed by 

Maire et al. (2018) was a far more practical solution. This method did not show the 

true accuracy of the classification as actual livestock urination events were not 

captured, so therefore could not be compared directly to the features seen on the 

ground. However, statistical analysis of the spectral differences between detected 

“patch” and “non-patch” areas were shown to be significant and therefore likely to be 

actual patches. Manual methods of identifying when, where and how much urine is 

deposited by livestock are extremely time consuming (Auerswald et al., 2010; 

Dennis et al., 2011), so this method (once validated) would be a step forward in this 

area of research.  

 

Therefore, the aims of both exploratory case studies were met, however both 

require further work to validate the accuracy of upscaling GHG emissions from the 

different features that were classified, although this concept itself is supported by 
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other researchers (Davidson et al., 2017; Lovitt et al., 2018).  They also both 

showed how the UAS and its sensor package could be deployed over very different 

areas of land-use, conducting low altitude RS to aid in answering specific research 

questions. 

 

8.7 Key considerations using UAS for precision agriculture 
and land conservation 

One of the key points of precision agriculture is understanding in intra field variability 

between soils and crop yield (Hunt & Daughtry, 2018), as being able to react to this 

in a timely manner typically reduces field input requirements (which is a boon for 

farmers and the environment), whilst enhances yield and makes harvesting easier 

(Hunt & Daughtry, 2018). The condition of soils can be identified though ground 

based surveys measuring electrical conductivity and analysis of soils to identify key 

nutrients (Pedersen & Lind, 2017), and yield can be monitored by harvesting 

machinery (Pedersen & Lind, 2017). However, the monitoring of crop growth is also 

key, and this is where UAS can best be used. 

 

A paper by Hunt & Daughtry (2018) nicely outlines the three main niches where 

UAS can be used to aid precision agriculture; crop scouting, monitoring and 

planning (table 8-1), all of which can be applied to UAS operations of land-use in 

general. For farmers and agricultural consultants, the use of commercial grade RTF 

UAS equipped with standard digital cameras are ideal for the scouting role. They 

allow more extensive (or quicker) field walking to note problem areas, simply by 

viewing the real time video feedback from the UAS, without the need for any further 

image processing (so cost would simply be the aircraft itself). Any problem areas 

discovered can then be investigated in more detail on the ground to enable more 

informed management decision to be made. However, relying on using a UAS alone 

for field walking may mean that certain insect pests or the very early development of 

disease or weeds could be missed if the resolution of the data being viewed is not 

sufficient (Hunt & Daughtry, 2018). 
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Table 8-1: The three niches of UAS remote sensing for precision agriculture (Hunt & 
Daughtry, 2018). 

 

 

Similarly, conservation land managers can also make use of this lower cost scouting 

niche for the management of their own land. For instance, the River Forth Fisheries 

Trust (RFFT) used RTF UAS to give context to the scale of INNS species along 

riverbanks they were managing using the following method:  

 

 “Initial quick surveys are taken from bridges or easily accessed areas where 

a long section of river can be seen. Evidence of invasive species is noted 

(either present or absent) so that it can be followed up in more detail later. 

 Follow up ground-based surveys are undertaken by volunteers or staff and 

typically map the linear extent of the species along the riverbank but not the 

density, as this data is not required by RFFT for identifying the spread along 

the Forth catchment”. (Louis, 2014) 

 

These manual surveys only indicate the extent of infestation and not necessarily the 

density of patches, although this might be recorded sometimes along with a digital 

photograph of particularly bad patches (Louis, 2014), and as they are done on foot, 

they might not show the true extent of invasion if certain areas are too difficult to 

access easily. This is where the monitoring niche comes into play, requiring full 

mapping of an areas under investigation. However, potentially more investment in 

both UAS hardware, sensors, image processing and analysis software would need 

to be made (as demonstrated in chapter 6 of this thesis), along with time for 

conducting surveys over regular time frames. 
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For precision agriculture, applications such as monitoring the development of 

weeds, disease and insect pests could be carried out (as indicated in chapters 4 and 

5 of this thesis), as well as indicating potential yield. Companies such as 

DroneDeploy (San Francisco, USA) and Pix4D (Lausanne, Switzerland) are offering 

both mission planning software for RTF UAS and online or personal computer-

based software that can process collected imagery into orthomosaics and surface 

models, as well as provide analytical routines to aid in identifying in field variability, 

plant establishment, plant count, weed and pest analysis routines (DroneDeploy, 

2018). However, the literature for the effectiveness and accuracy of these routines is 

grey and may only apply to certain crops or when surveyed under ideal 

environmental conditions or at optimum crop growth times. This grey literature 

suggests that uncalibrated standard digital cameras can be used, especially if 

calibrated through ground truthing (e.g. Wrangham, 2017), however Hunt & 

Daughtry (2018) suggest the use of calibrated multispectral sensors as monitoring 

examines changes over time, and therefore calibration needs to be done to avoid 

changes due to illumination. A paper by Maes & Steppe (2018) gives a good 

indication of how applicable each type of sensor is for a variety of precision 

agriculture applications (table 8-2). 

 

Table 8-2: Overview of the applications and suitability of different sensors used for 
UAS enabled precision agriculture. HS = highly suited; S = suited; Sb indicates 
calculation of sun-induced fluorescence from hyperspectral data (Maes & Steppe, 
2018). 
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The planning niche is less applicable for conservation land managers as monitoring 

can supply them with the information required to plan for land management 

activities, but it is the ideal application of UAS for precision agriculture. The planning 

niche involves the creation prescription maps for variable rate application of field 

inputs (e.g. fertilizer and pesticides), enabling optimum inputs to be applied and 

reducing input costs and therefore impacts to the environment in the process (e.g. 

less GHG emissions and nutrient runoff). To ensure geolocation accuracy, the UAS 

system will also require high accuracy GNSS (or use GCPs) and ideally calibrated 

multispectral sensors so that biomass can be evaluated with more confidence (Hunt 

& Daughtry, 2018; Maes & Steppe, 2018). The data captured needs to be processed 

into orthomosaic and surface models, potentially combined with other sources of 

data such as soil conductivity and nutrient analysis (Maes & Steppe, 2018) and 

analysed within GIS (or farm management software) with ground truth information in 

order to create a variable rate prescription map. 

 

The costs for obtaining and using data of this type are therefore higher (for UAS 

equipment, sensors, data processing and potentially time required for data capture) 

and this niche also requires more expensive variable rate farm machinery (Pedersen 

& Lind, 2017). Interestingly, Hunt & Daughtry (2018) indicate that comparisons 

between nutrient prescription maps created using UAS RS data vs those created 

from yield maps or proximal sensors (e.g. active sensors mounted on tractor cabs to 

enable ‘on the go’ variable rate applications), have not been completed with any 

rigour for multi-year applications. Further to this, Maes & Steppe (2018) also 

suggest that variable rate management machinery typically in use today (e.g. boom 

sprayers) are currently too coarse in their application abilities (around 10 m), and 

therefore the full commercial potential of using UAS derived high resolution 

prescription maps may not be apparent for some time. 

 
Finally, both environmental and agricultural research areas make use of UAS with 

high precision GNSS and often combinations of sensors, with one area that is 

showing a marked increase in interest being the use of UAS for rapid plant 

phenotyping. This particular aspect of agricultural research is partly driven by the 

changing environmental factors caused by climate change, where tolerance to 

drought or specific pests or disease needs to be identified to ensure that crop yields 

can be maintained in the future (Chapman et al., 2014; Sankaran et al., 2015 ; 

Haghighattalab et al., 2016; Gracia-Romero et al., 2019).  Often termed high 
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throughput plant phenotyping (HTPP), this technique requires the monitoring of plant 

growth information without the need for destructive sampling, identifying desirable 

traits such as water stress tolerance, disease resistance and yield (Rahaman et al., 

2015; Shakoor et al., 2017). To understand and identify these traits within an infield 

setting (rather than a laboratory), a considerable amount of manual work is required 

if only capturing data from the ground (often using a combination of handheld 

sensors). However, if UAS are used for HTTP then time savings can be made, 

reducing costs and enabling larger trials of more varieties and treatment types at the 

same time (Chapman et al., 2014; Haghighattalab et al., 2016; Gracia-Romero et 

al., 2019). 

 

8.8 Conclusions, limitations and future thoughts 
As has been discussed in this thesis and highlighted in many other studies, the 

potential utility of UAS are legion. This project itself has covered a range of different 

land-use areas, showing the applicability of this technology as a tool for research 

and education, and detailed potential precision agriculture applications that could be 

further evolved into tools which would add value to commercial agricultural 

operations. From a purely research and education perspective multirotor UAS are 

very nearly already a perfect tool, allowing flexible deployment to a wide range of 

environments and with an effective level of autonomy, as long as areas to be 

investigated are relatively compact. The software available for processing and 

analysing the data is also prevalent and effective, however both software and UAS 

are still evolving. As is RS itself from these platforms, with new types of sensors 

being miniaturised to improve their utility, such as multispectral imagers designed for 

precision agriculture, that process data during flight using reduced image overlap 

(SlantRange, 2019). Further research is also ongoing to identify the best methods to 

employ with these sensors, to ensure reliable and representable data capture 

(Assmann et al., 2018). 
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However, there are still many hurdles to overcome before they can be more 

effectively integrated for land-use activities on a grander scale, in particular for 

precision agriculture applications. From a technological perspective, power sources 

(i.e. batteries) need further improvements to provide longer endurance and therefore 

allow the coverage of larger areas, especially at lower altitudes to gain the highest 

resolution data. Positional accuracy is another area where further gains need to be 

made, although the development of RTK and PPK (post processing kinematic) 

GNNS receivers look well placed to provide centimetre accuracy for UAS derived 

data outputs (Du et al., 2017; Forlani et al., 2018; Tomaštík et al., 2019). Positional 

accuracy is also required for further autonomy, for if UAS can be relied upon to 

perform their work with limited human interaction then their utility increases 

considerably (Davies et al., 2018). Some researchers are already exploring this with 

the concept of using swarms of small UAS to inspect crops, allowing a greater area 

of coverage due to inter-robotic communication and the ability to self-recharge 

(Carbone et al., 2018). 

 
However, the main stumbling block for both improved UAS autonomy and/or 

increasing endurance (and therefore range from the operator), is regulations (Davies 

et al., 2018; Maes & Steppe, 2018). For obvious safety reasons current regulations 

in the UK require a human to be in control, and for that human to be able to visually 

see the aircraft at all times. However, this greatly reduces the utility of UAS as often 

fields are longer than 500 m and therefore require the more than one flight to 

complete as the operator has to move position. The regulations are however 

changing, as can be seen with the recent introduction of the Air Navigation 

(Amendment) Order 2018, and more autonomy may be possible in the future as the 

UK emergency services already have permission to operate beyond visual line of 

site in emergency situations (CAA ORS4 No.1233, 2017). The weather will also 

always be a limiting factor for UAS use, although sensors and UAS themselves can 

be made waterproof and be built to handle stronger winds but getting effective data 

under adverse conditions would likely still be prohibitive. 
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Despite these challenges, the diverse utility of UAS means that the future use of 

them within the UK looks set to increase and provide a greatly needed productivity 

boost to many sectors of the UK economy; As a recently released report from 

PricewaterhouseCoopers (PwC, 2018) estimates that by 2030 some 628,000 jobs 

will be directly involved with aspects of UAS operation, support and data analysis, 

and an estimated 76,000 UAS will be in operation across a range of industrial 

sectors, with a large portion of them being used for education, research and 

precision agriculture (figure 8-8). 

 

 
Figure 8-8: Estimated number of UAS in UK skies in 2030, by sector (PwC, 
2018). 
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Appendix A – ImageJ script commands and macro 
script 

 
Script for dark-corrected images generation 
 
1) To generate a dark frame using the dark image (RAW format), execute the 

command “dcraw -v -D -4 -j -t 0 darkimagefilename.rawfileextension” (table A-
1). 
 

2) Afterwards, the dark frame can be subtracted from the RAW images being 
processed by using the script command “dcraw -v -r 1 1 1 1 -q 0 -o 0 -4 -j -t 0 –T 
–K darkimagefilename.pgm *.rawfileextension”, which it will generate linear 
dark-corrected 16-bit tiff images. 

 
Table A-1: DCRaw command parameters explanation, according to Luijk (2007) & 
DCRaw (2015) 

-v Provides textual information about the RAW conversion process. 

-D Returns raw data with the original unscaled pixel values. 

-4 Generates a linear 16-bit file as its output. 

-j Does not stretch the image. 

-t 0 Disables flipping the output images. 

-r 1 1 1 1 
Custom white balance for the four channels (1 red, 1 blue, 2 green) by 
choosing the individual multiplying factors. Using 1 as factor assures 
that no white balance will be performed. 

-q 0 Sets the Bayer demosaicing algorithm to be bilinear. 

-o 0 Sets the output colour profile to be none (no colour management). 

-T Specifies a TIFF image file as the output file type 

-K Subtracts a dark frame from the raw data. 

 

Image Processing using Fiji (ImageJ) 
 

1) Installation: Download the latest stable version (http://fiji.sc/Downloads#Fiji) 
and then unpack the zip (there is no install). 
 

2) Setup directories: Create an input and an output directory, making sure that 
there is a RED, GREEN and BLUE subdirectory, and copy the images you 
want to analyse into the input directory. 

 
3) Execute the script: Execute ImageJ-win64.exe to start Fiji, and from the main 

menu bar select Plugins->Macros->Edit.  Copy the custom script (Appendix 
2) into the edit window.  On the macro window select Language -> IJ1 Macro 
and alter the input and output variables to match the input and output 
directories that you have created. Click on the Run button and the script will 
process the images showing a log that will say “—PROCESSING 
COMPLETE—“ when finished. 

 
4) Batch analysis: Return to the Fiji main menu and select Analyze->Set 

Measurements and ensure that mean grey value and standard deviation 
value are selected. Go back to the Fiji main menu and selecting Process-
>Batch->Measure and select your output directory for the relevant colour 



  

254 
 

channel. It should show a results window detailing all of the cropped images 
and each ones accompanying data. 
 

ImageJ macro script  
 
// NOTE this should work for any image file size, both tiff (16 bit) and jpg (24 bit) 
 
// input and output directories 
// NOTE ensure only image files are present in input and output directory contains RED, GREEN and BLUE folders 
that are empty! 
 
Input = “C:\\??\\??\\”; 
output = “C:\\??\\??\\”; 
 
// run in batch mode to speed things up (does not open files etc to the GUI 
setBatchMode(true);  
 
// get the file list from the input directory 
file = getFileList(input); 
 
// loop the file list and process the function 
for (i = 0; i < file.length; i++) 
 SplitAndCrop(input, output, file[i]); 
 
setBatchMode(false); 
 
print ("--PROCESSING COMPLETE--"); 
 
// this function will open a file, split it into RGB channels, 
// crop each channel to a central 9x9 pixel window and the save the crop as a tiff 
function SplitAndCrop(input, output, filename) { 
// open the first file 
 open(input + filename); 
 print ("Opened " + filename); 
 selectWindow(filename); 
// select the newely created RGB image (8 bit) and split it into three channels 
// set the scale to pixels 
 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel"); 
 print ("Set Scale Done"); 
// Identify the height and width and set the centre point to use 
 Cwidth = (getWidth()/2)-5; 
 print ("Width = " + getWidth() + "; Cwidth = " + Cwidth); 
 Cheight = (getHeight()/2)-5; 
 print ("Height = " + getHeight() + "; Cheight = " + Cheight); 
// identify bit depth (effects the active window names) 
 Bdepth = bitDepth(); 
 print ("Bit depth = " + Bdepth); 
// split the channels 
 if (Bdepth == 8) { 
  run("RGB Color"); 
  print ("8 Bit Image Converted"); 
 }  
 run("Split Channels"); 
 print ("Split Channels Done"); 
  
// select the blue channel image, crop it and save it as tiff 
 if (Bdepth == 16) { 
  selectWindow("C3-" + filename); 
 } else { 
  selectWindow(filename + " (blue)"); 
 } 
 makeRectangle(Cwidth, Cheight, 9, 9); 
 run("Crop"); 
 print ("Cropped " + filename + " BLUE"); 
 saveAs("Tiff", output + "BLUE\\" + filename + "_BLUE.tif"); 
 print ("Saved " + filename + " BLUE"); 
 close(); 
 print ("Closed BLUE Channel"); 
 
// select the green channel image, crop it and save it as tiff 
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 if (Bdepth == 16) { 
  selectWindow("C2-" + filename); 
 } else { 
  selectWindow(filename + " (green)"); 
 } 
 makeRectangle(Cwidth, Cheight, 9, 9); 
 run("Crop"); 
 print ("Cropped " + filename + " GREEN"); 
 saveAs("Tiff", output + "GREEN\\" + filename + "_GREEN.tif"); 
 print ("Saved " + filename + " GREEN"); 
 close(); 
 print ("Closed GREEN Channel"); 
 
// select the red channel image, crop it and save it as tiff 
 if (Bdepth == 16) { 
  selectWindow("C1-" + filename); 
 } else { 
  selectWindow(filename + " (red)"); 
 } 
 makeRectangle(Cwidth, Cheight, 9, 9); 
 run("Crop"); 
 print ("Cropped " + filename + " RED"); 
 saveAs("Tiff", output + "RED\\" + filename + "_RED.tif"); 
 print ("Saved " + filename + " RED"); 
 close(); 
 print ("Closed RED Channel"); 
} 
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Appendix B – Image pre-processing script 
 
// S Gibson-Poole 22/06/2016 
// V1 - utility to convert raw images 
 
 
// run in batch mode to speed things up (does not open files etc to the GUI 
setBatchMode(true);  
 
// Check that the tools needed exist 
DCRAW = "E:\\SJGP_ImageProcessing\\RawProcessing\\TOOLS\\dcraw.exe"; 
EXIFTool = "E:\\SJGP_ImageProcessing\\RawProcessing\\TOOLS\\exiftool.exe"; 
PTLens = "C:\\Program Files\\ePaperPress\\PTLens\\PTLens.exe"; 
PTLensDir = "C:\\Program Files\\ePaperPress\\PTLens"; 
 
// if DCRAW not found go find it 
if (File.exists(DCRAW)!=1) { 
 DCRAW = File.openDialog("Select the location of DCRAW."); 
 if (DCRAW == "") exit; 
 print ("DCRAW selected here " + DCRAW); 
} 
 
// if EXIFTool not found go find it 
if (File.exists(EXIFTool)!=1) { 
 EXIFTool = File.openDialog("Select the location of EXIFTool."); 
 if (EXIFTool == "") exit; 
 print ("EXIFTool selected here " + EXIFTool); 
} 
 
// if PTLens not found go find it 
if (File.exists(PTLens)!=1) { 
 PTLensDir=getDirectory("Select the location of the PTLens program."); 
 if (PTLensDir == "") exit; 
 print ("PTLens selected here " + PTLensDir); 
} 
 
//open PTlens so that the parameters can be checked before processing continous 
exec("cmd.exe /c \""+PTLens+"\""); 
 
// ask which way to process 
Choice = getBoolean("Select 'Yes' For Visual or 'No' for Linear processing"); 
 
// ask if RGB or NIR data 
Sensor = getBoolean("Select 'Yes' For RGB data or 'No' for NIR data"); 
 
if (Sensor == 1) { 
 print("Processing RGB data"); 
 Sensor = "RGB"; 
 DarkFramesDir = "E:\\SJGP_ImageProcessing\\RawProcessing\\DarkImages\\RGB\\"; 
} else{ 
 print("Processing NIR data"); 
 Sensor = "NIR"; 
 DarkFramesDir = "E:\\SJGP_ImageProcessing\\RawProcessing\\DarkImages\\NIR\\"; 
} 
  
// ask for raw file source directory 
RAWDir = getDirectory("Select the location of the raw files to process."); 
print("Processing RAW files located here "+RAWDir); 
 
if (RAWDir == "") { 
 print ("RAWDir not selected, aborting."); 
 exit; 
} 
 
// check for existance of directory to copy to and quit if there already 
if (Choice == 0) { 
 if (File.isDirectory(RAWDir+"LIN\\")==1) { 
  print ("LIN Subdirectory already exists! check and remove before trying again."); 
//  exit; 
 } 
 File.makeDirectory(RAWDir+"LIN\\"); 
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 print("Processing linear data"); 
 Type = "LIN\\"; 
} 
 
if (Choice == 1) { 
 if (File.isDirectory(RAWDir+"VIS\\")==1) { 
  print ("VIS Subdirectory already exists! check and remove before trying again."); 
//  exit; 
 } 
 File.makeDirectory(RAWDir+"VIS\\"); 
 print("Processing visual data"); 
 Type = "VIS\\"; 
} 
 
// ask for georefereced jpg directory 
JPGDir = getDirectory("Select the location of the georeferenced JPG files."); 
print("Geotagged files are here "+JPGDir); 
 
if (JPGDir == "") { 
 print ("JPGDir not selected, aborting."); 
 exit; 
} 
 
// now we want to get the file list and do a loop processing each in turn 
RAWFile = getFileList(RAWDir); 
for (i = 0; i < RAWFile.length; i++) { 
 
 // Only process DNG files 
 if (endsWith(RAWFile[i],"DNG")) { 
  print ("Processing "+RAWFile[i]); 
 
  // first off get the iso info from the JPG 
  iso = exec("cmd.exe /c "+EXIFTool+" -T -iso 
"+JPGDir+"IMG"+substring(RAWFile[i],3,(lengthOf(RAWFile[i])-4))+"_geotag.JPG"); 
 
  // clean it up as it adds a return statement to the end of the value and is a string 
  iso = parseInt(substring(iso,0,lengthOf(iso)-1)); 
   
  // make sure it is range with the dark frame images we have 
  if (iso==80 || iso==100 || iso==125 || iso==160 || iso==200 || iso==250 || iso==320 || iso==400) { 
   print("ISO is __"+iso+"__"); 
  } else { 
   print("ISO is out of range at __"+iso+"__"); 
   exit; 
  } 
 
  // now get and check the shutter speed info from the JPG 
  Sspeed = exec("cmd.exe /c "+EXIFTool+" -T -shutterspeed 
"+JPGDir+"IMG"+substring(RAWFile[i],3,(lengthOf(RAWFile[i])-4))+"_geotag.JPG"); 
 
  // clean it up as it adds a return statement to the end of the value and is a string 
  Sspeed = parseInt(substring(Sspeed,2,lengthOf(Sspeed)-1)); 
 
  print("Shutter Speed read as __"+Sspeed+"__"); 
 
  // set the range to use going for the dark image correction 
  if (Sspeed <= 200) { 
   Sspeed="200"; 
  } else if (Sspeed <= 250) { 
   Sspeed="250"; 
  } else if (Sspeed <= 400) { 
   Sspeed="320"; 
  } else if (Sspeed > 400 && Sspeed <= 640) { 
   Sspeed="500"; 
  } else if (Sspeed > 640 && Sspeed <= 2000) { 
   Sspeed="1000"; 
  } else { 
   print("Shutter Speed is out of range at __"+Sspeed+"__"); 
   exit; 
  } 
  print("Shutter Speed set to "+Sspeed); 
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  // Check dark frame to use 
  DarkFrame = DarkFramesDir+Sensor+"_iso"+iso+"_ss"+Sspeed+".pgm"; 
  print("Using dark frame "+DarkFrame); 
 
  if (File.exists(DarkFrame)!=1) { 
   print("Dark frame "+DarkFrame+" does not exist!"); 
   exit; 
  } 
   
  // take first file and convert using dcraw into the same folder as the dng 
  if (Choice == 0) { 
   exec(DCRAW+" -r 1 1 1 1 -f -o 0 -4 -j -t 0 -T -K "+DarkFrame+" 
"+RAWDir+RAWFile[i]); 
  } else { 
   exec(DCRAW+" -w -f -o 1 -H 2 -4 -j -t 0 -T -K "+DarkFrame+" "+RAWDir+RAWFile[i]); 
  } 
 
  if (File.exists(RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff")==1) { 
   print(RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff created"); 
  } 
 
  // run imagej despecle outputting into the VIS or LIN folder 
  open(RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff"); 
  selectWindow(substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff"); 
  run("Despeckle"); 
  saveAs("Tiff",RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds.tiff"); 
  close(); 
   
  // check the file exists 
  if (File.exists(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds.tiff")==1) { 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds.tiff 
created"); 
  } 
 
  // run ptlens to correct and clip the image in the vis or lin folder 
  exec("cmd.exe /c cd \""+PTLensDir+"\" & start /wait PTLens -Q 
"+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds.tiff"); 
   
  // rename the file (delete existing file in case this is a re-run) 
  exec("cmd.exe /c del "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt.tiff & ren "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds.tiff 
"+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff"); 
 
  // check that the file exists 
  if (File.exists(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff")==1) 
{ 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff 
created"); 
  } 
 
  // run imagej to sharpen the image if VIS 
  if (Choice == 1) { 
   open(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff"); 
   selectWindow(substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff"); 
   run("Sharpen"); 
   saveAs("Tiff",RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt.tiff"); 
   close(); 
 
   // rename the file (delete existing file in case this is a re-run) 
   exec("cmd.exe /c del "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt_sh.tiff & ren "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff 
"+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt_sh.tiff"); 
 
   // check that the file exists 
   if (File.exists(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt_sh.tiff")==1) { 
    print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt_sh.tiff created"); 
   } 
 
   // run exiftool to set the GPS 
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   exec("cmd.exe /c "+EXIFTool+" -TagsFromFile 
"+JPGDir+"IMG"+substring(RAWFile[i],3,(lengthOf(RAWFile[i])-4))+"_geotag.JPG 
"+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt_sh.tiff"); 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt_sh.tiff 
geotagged with JPG data"); 
 
   // run exiftool to take information from the CRW 
   exec("cmd.exe /c "+EXIFTool+" -TagsFromFile 
"+RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff 
"+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt_sh.tiff"); 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt_sh.tiff 
geotagged with RAW data"); 
 
   // delete the orignal tiff and renamed tiff images 
   exec("cmd.exe /c del "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt_sh.tiff_original & del "+RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff"); 
  } else { 
   // run exiftool to set the GPS 
   exec("cmd.exe /c "+EXIFTool+" -TagsFromFile 
"+JPGDir+"IMG"+substring(RAWFile[i],3,(lengthOf(RAWFile[i])-4))+"_geotag.JPG 
"+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff"); 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff 
geotagged with JPG data"); 
 
   // run exiftool to take information from the CRW 
   exec("cmd.exe /c "+EXIFTool+" -TagsFromFile 
"+RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff 
"+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff"); 
   print(RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+"_ds_pt.tiff 
geotagged with RAW data"); 
 
   // delete the orignal tiff and renamed tiff images 
   exec("cmd.exe /c del "+RAWDir+Type+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-
4))+"_ds_pt.tiff_original & del "+RAWDir+substring(RAWFile[i],0,(lengthOf(RAWFile[i])-4))+".tiff"); 
  } 
 } 
// select the next file 
} 
//End Loop 
 
setBatchMode(false); 
 
print ("-- "+Type+" PROCESSING COMPLETE --"); 
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Appendix C – Potato disease detection paper 
 
Please see the file Appendix_C_PotatoDiseaseDetectionPaper.pdf within the 
supporting documentation CD Rom. 
 

Appendix D – Potato trials analysis paper 
 
Please see the file Appendix_D_PotatoTrialsAnylsisPaper.pdf within the 
supporting documentation CD Rom. 
 

Appendix E – SRUC Operations manual and site 
safety assessment template for commercial UAS 
operations 
 
Please see the file Appendix_E_SRUC-UAS-OM-0001_1.5_20180611.pdf (the 
operations manual) and Appendix_E_SRUC-UAS-OM-0002_2.3_20180521.pdf 
(the site safety assessment template) within the supporting documentation CD Rom. 
 

Appendix F – Report on experimental analysis of 
winter wheat trial plots 
 
Please see the file Appendix_F_CauldshielTrialsResults.pdf within the supporting 
documentation CD Rom. 
 

Appendix G – Report on experimental classification 
of topographical features within a clear-felled forest 
 
Please see the file Appendix_G_HarwoodClearfellClassificationReport.pdf 
within the supporting documentation CD Rom. 
 

Appendix H – Urine patch detection paper 
 
Please see the file Appendix_H_UrinePatchDetectionPaper.pdf within the 
supporting documentation CD Rom. 
 
 
 
 
(The End) 
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