3 research outputs found

    A Novel Assembly Line Scheduling Algorithm Based on CE-PSO

    Get PDF
    With the widespread application of assembly line in enterprises, assembly line scheduling is an important problem in the production since it directly affects the productivity of the whole manufacturing system. The mathematical model of assembly line scheduling problem is put forward and key data are confirmed. A double objective optimization model based on equipment utilization and delivery time loss is built, and optimization solution strategy is described. Based on the idea of solution strategy, assembly line scheduling algorithm based on CE-PSO is proposed to overcome the shortcomings of the standard PSO. Through the simulation experiments of two examples, the validity of the assembly line scheduling algorithm based on CE-PSO is proved

    A Multi-Objective Variable Neighborhood Search Algorithm for Precast Production Scheduling

    Get PDF
    In real life, precast production schedulers face the challenges of creating a reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and objectives encountered in the precast production scheduling problem (PPSP) were addressed, with the goal to minimize makespan and total earliness and tardiness penalties. A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the performance was tested on 11 problem instances. Ten of these were generated using precast concrete production information taken from the literature. One real industrial problem from a precast concrete company was considered as a case study. Extensive experiments were conducted, and the spread and distance metrics were used to evaluate the quality of the non-dominated solutions set. Statistical analysis demonstrated that the result was statistically convincing. Computational results showed that the proposed MOVNS algorithm was significantly better when compared to the other nine algorithms. Therefore, the proposed MOVNS algorithm was a very competitive method for the considered PPSP

    A simheuristic for bi-objective stochastic permutation flow shop scheduling problem

    Get PDF
    This paper addresses the stochastic permutation flow shop problem (SPFSP) in which the stochastic parameters are the processing times. This allows the modeling of setups and machine breakdowns. Likewise, it is proposed a multi-objective greedy randomized adaptive search procedure (GRASP) coupled with Monte-Carlo Simulation to obtain expected makespan and expected tardiness. To manage the bi-objective function, a sequential combined method is considered in the construction phase of the meta-heuristic. Moreover, the local Search combines 2-optimal interchanges with a Pareto Archived Evolution Strategy (PAES) to obtain the Pareto front. Also, some Taillard benchmark instances of deterministic permutation flow shop problem were adapted in order to include the variation in processing times. Accordingly, two coefficients of variation (CVs) were tested: one depending on expected processing times values defined as twice the expected processing time of a job, and a fixed value of 0.25. Thus, the computational results on benchmark instances show that the variable CV provided lower values of the expected makespan and tardiness, while the con-stant CV presented higher expected measures. The computational results present insights for further analysis on the behavior of stochastic scheduling problems for a better approach in real-life scenarios at industrial and service systems
    corecore