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Abstract. In real life, precast production schedulers face the challenges of creating a 
reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and 
objectives encountered in the precast production scheduling problem (PPSP) were 
addressed, with the goal to minimize makespan and total earliness and tardiness penalties. 
A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the 
performance was tested on 11 problem instances. Ten of these were generated using precast 
concrete production information taken from the literature. One real industrial problem from 
a precast concrete company was considered as a case study. Extensive experiments were 
conducted, and the spread and distance metrics were used to evaluate the quality of the non-
dominated solutions set. Statistical analysis demonstrated that the result was statistically 
convincing. Computational results showed that the proposed MOVNS algorithm was 
significantly better when compared to the other nine algorithms. Therefore, the proposed 
MOVNS algorithm was a very competitive method for the considered PPSP. 
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1. Introduction 
Construction industries face problems of delay, cost 

overruns, low quality, poor safety records and 
environmental impacts because of risk, uncertainties, 
labor complexity and recent dynamic change [1-2]. To 
overcome these problems, the industrialized precast 
construction technique has developed rapidly since its 
inception in the 1950’s. Precast construction is different 
from traditional construction methods and requires 
components such as beams, columns and girders to be 
prefabricated in factories before transportation and 
installation on-site according to the erection schedule. 
Production scheduling has a dramatic impact on the 
success of precast fabrication because it involves making 
accurate decisions on when the many precast components 
(PCs) need to be produced to meet their due dates of 
delivery. Unfortunately, in practice, precast production 
schedules are arranged by experience-based estimation as 
a subjective approach that frequently results in inefficient 
precast manufacturing processes [3-6]. Therefore, to 
eliminate the unexpected consequences of manually 
arranged production schedules, modeling and 
computational techniques are now used to consider more 
realistic constraints prevailing in the precast industry, such 
as off-normal working time and non-preemptible 
fabrication processes [7-8], limited workers and cranes [9], 
buffer size between production stations [3-4, 10], mold 
availability [11], different concrete formulas [12] and 
multiple production lines [13].  

Most previous investigations used the precast 
production scheduling problem (PPSP) model based on 
the traditional flow shop scheduling problem (FSSP) 
model that was defined as a non-deterministic polynomial-
time hard (NP-hard) problem [6-7, 11] and solved by 
genetic algorithm (GA) based optimization methods [4, 6-
11, 13-14]. Other heuristics such as Palmer’s heuristic [15], 
Gupta’s heuristic [16], the Campbell Dudek Smith (CDS) 
heuristic [17], rapid access (RA) heuristic [18], earliest due 
date (EDD) rule, as soon as possible rule, shortest 
processing time (SPT) rule, and least slack time rule have 
also been developed to provide performance verification 
of the algorithms to solve the PPSP [4, 7, 8, 13, 19]. Results 
indicated that variants of GA metaheuristics provided 
better solutions than the heuristics and dispatching rules 
for solving the PPSP. However, previous studies ignored 
other competitive metaheuristic algorithms such as multi-
objective variable neighborhood search (MOVNS) and 
non-dominated sorting genetic algorithm II (NSGA-II), 
while GA based metaheuristics were not compared with 
any of these algorithms. 

The variable neighborhood search (VNS) algorithm 
[20-21] is a local search-based metaheuristic that was first 
proposed in 1997. By employing systematic changes of 
neighborhood, VNS is able to explore increasingly distant 
neighborhoods of current incumbent solutions to obtain 
promising results. Due to its simplicity and powerful 
search ability, VNS approaches have been successfully 
applied to solve various scheduling problems in both 
single and multiple objectives, including the flow shop 

scheduling problem [22-26], the job shop scheduling 
problem [27-30], and the single machine scheduling 
problem [31]. Similarly, the NSGA-II, first introduced by 
Deb et al. [32] is one of the most proficient evolutionary 
algorithms used for solving multi-objective optimization 
problems. The NSGA-II has been successfully applied to 
solve flow shop and job shop scheduling problems [23-24, 
33-34]. Although the VNS and NSGA-II have been 
successfully applied to solve many scheduling problems, 
an extensive literature review revealed little evidence, if 
any, as to whether VNS and NSGA-II have been applied 
to solve the PPSP. Therefore, the objective of this study 
was to extend the application of VNS and NSGA-II 
algorithms to solve the PPSP.  

Ko and Wang [4] applied the multi-objective genetic 
local search (MOGLS) algorithm of [35] to solve the PPSP. 
The MOGLS algorithm successfully searched for 
optimum production schedules and outperformed seven 
methods, including the Palmer, Gupta, CDS and RA 
heuristics, the EDD rule, the vector evaluated genetic 
algorithm (VEGA) and the constant weight genetic 
algorithm (CWGA). Therefore, here, the MOGLS was 
considered as a comparative algorithm to solve the PPSP 
due to its competitive performance.  

The main contributions of this study are summarized 
as follows. Firstly, MOVNS and NSGA-II were 
implemented to solve the multi-objective PPSP based on 
the mathematical model proposed in [7]. The application 
of MOVNS and NSGA-II also fills the research gap since 
these algorithms have never been applied before to solve 
the PPSP. Secondly, this study extended the PPSP size up 
to 100 jobs, while previous studies only considered the 
PPSP for 6 jobs [7], 10 jobs [3-4, 6, 10-11, 13-14], 30 jobs 
[4], 36 jobs [14] and 44 jobs [7]. A real-world PPSP was 
also provided as a case study. Lastly, distance metrics were 
applied to measure all tested algorithms to solve the PPSP. 
Distance metrics consider both the diversity and 
convergence of population solutions, while the spread and 
spacing metrics used in [4] only considered diversity. 
Moreover, to demonstrate the competitive performance 
over algorithms proposed in previous studies to solve the 
FSSP, some recent metaheuristic algorithms such as 
cuckoo search algorithm, bat algorithm, and firefly 
algorithm were used to compare the search capability.  

The remainder of this paper is organized as follows: 
Section 2 discusses the mathematical model of the PPSP. 
Section 3 describes the proposed MOVNS and NSGA-II 
algorithms for solving the PPSP. Section 4 demonstrates 
the experiments and computational results of the 
proposed approaches, while conclusions and 
recommendations are presented in Section 5. 

 

2. Precast Production Scheduling Problem 
Warszawski and Ishai [36] divided precast production 

systems into two basic types, namely the stationary 
production system and the traveling production system. In 
the stationary production system, all basic production 
operations are performed at fixed locations and a 
comprehensive workforce is involved. In the traveling 
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system, molds are moved among different workstations 
and diverse operations are processed by different 
workforces using specialized tools and methods. Precast 
production processes using specialized methods can be 
broken down into six tasks, i.e., (1) mold assembly, (2) 
reinforcement setting, (3) concrete pouring, (4) concrete 
curing, (5) demolding, and (6) product finishing. With the 
traditional FSSP, each job consists of operations and each 
operation is executed on a specific machine. This cannot 
be applied to the precast production scheduling problem 
(PPSP) directly because some practical constraints 
encountered in the industry are disregarded in FSSP. A 
PPSP model based on FSSP was proposed by Chan and 
Hu [7] with the following assumptions. 

Firstly, there is no distinction between normal 
working time and off-normal working time in the 
traditional FSSP; however, interruptions inevitably 

happen in precast plants when workers punch out after 
working time, which is normally 8 hours a day. 
Furthermore, the labor force needs to be paid to work 
overtime within the limited hours (assuming no more than 
4 hours) if necessary. Secondly, all operations in the 
traditional FSSP are uninterruptible. This means that an 
operation once started cannot be interrupted until 
completion. Operations in precast plants can be divided 
into interruptible operations (mold assembly, 
reinforcement setting, demolding and product finishing) 
and uninterruptible operations (concrete pouring and 
concrete curing). Interruptible operations can be 
interrupted and continued to execute the unfinished part 
on the next day if they cannot be completed within normal 
working time; this causes inevitable interruption time (off-
normal working time). A description of notations used in 
the mathematical formulation is listed in Table 1. 

 
In practice, production schedules are constructed to 

minimize production duration and cost. Minimization of 
makespan, which is defined as the total time needed to 
complete all jobs, is a commonly-used objective to 
estimate the performance of PPSP models [3-4, 6-10, 13-
14]. Earliness and tardiness are related to job due dates. 
Certain penalty costs are incurred when a job is completed 
either before or after its due date. Minimizing the total 
penalty costs of earliness and tardiness is, therefore, 
important to meet the just-in-time production control 
policy [37]. In this research, minimizing makespan and 
minimizing the total penalty costs of earliness and 
tardiness were computed by Eqs. (1) and (2) and applied 
as multi-objective functions in the PPSP model.  

To handle the constraint on interruptible operations, 
Eq. (3) was utilized to calculate the completion time of 
interruptible processes. An uninterruptible operation such 
as concrete pouring would have to be postponed to the 
next working day if it could not be finished within the 
working hours or allowable overtime. The curing process 
is also an uninterruptible operation. Curing of the concrete 
occurs after pouring and no labor is required. A fast cure 
generally takes a few hours, while steam curing can be 
completed within 12-16 hours. The completion time of 
concrete pouring and curing was computed by Eqs. (4)-
(6), respectively. The accumulated completion time and 
the working days were calculated from Eqs. (7) and (8), 
respectively. More details of the PPSP model are available 
in [4, 7-8, 11, 14]. 

 
Objectives: 

 1 nmf x c                                                                                                            (1) 

     2 1 1
max 0, max 0,

n n

i i i i i ii i
f x d c c d 

 
        
                               (2) 

Table 1. Mathematical notations and definitions.  

Notation Definition 

n  total number of precast components (PCs) 

m  total number of workstations 

i  serial number of the PC (called “job” in traditional FSSP model). 

j  serial number of the workstation (called “machine” in traditional FSSP model). 

ijt  processing time of the thi  PC on the thj workstation 

ijc  

 

completion time of the thi  PC on the thj  workstation 

id  due date of the thi  PC 

D  working days 

i  unit earliness penalty for the thi  PC 

i  unit tardiness penalty for the thi  PC 

T  accumulated completion time 

WT  normal working time of a workday (8 hours) 

NT  off-normal working time 
 

AT  allowable overtime (assumed to be limited to 4 hours in one workday) 
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Constraints: 
 

if 24
, 1,2,..., ; 1,2,5,6

if 24

W

ij

N W

T T D T
c i n j

T T T D T

 
  

  
                                     (3) 

 

if 24
, 1, 2,..., ; 3

24 1 if 24

W A

ij

ij W A

T T D T T
c i n j

D t T D T T

  
  

    
                                      (4) 

   
3 4

*

i iT c t  ,       1, 2,...,i n                                                                                  (5) 

 

   

* * *

*

if 24 1 or 24
, 1, 2,..., ; 4

24 1 if 24 24 1

W

ij

W

T T D T D T
c i n j

D D T T D

    
  

    
                    (6) 

    1 1
max , iji j i j

T c c t
 

  ,  2,3,..., ; 2,3,4,5,6i n j                                     (7) 

 integer 24D T                                                                                           (8) 

 

3. Proposed Multi-Objective Algorithms for the 
PPSP 
In this paper, two metaheuristic algorithms as the 

multi-objective variable neighborhood search (MOVNS) 
and a non-dominated sorting genetic algorithm II (NSGA-
II) were first implemented to find the set of Pareto optimal 
solutions for the PPSP. Figure 1 illustrates a flowchart of 
these algorithms with details described in the following 
subsections. 
 
3.1. Proposed MOVNS for the PPSP 

Variable neighborhood search (VNS) is a local 
search-based metaheuristic that was originally proposed 
by Mladenović and Hansen [20]. It is based on the 
principle of systematic changes of neighborhood in both 
the descent phase to find a local optimum and the 
perturbation phase to escape from the corresponding local 
minimum valley. Thus, VNS does not follow a trajectory 
but explores increasingly distant neighborhoods of the 
current incumbent solutions to obtain promising 
neighboring solutions. The MOVNS algorithm used here 
was developed based on Geiger’s algorithm [38] and the 
flowchart of MOVNS is depicted in Fig. 1(a). 

The main steps of the developed MOVNS algorithm 
outline are as follows. 

 
Step 1 (Encoding): This study encodes production 
scheduling by precast components (PCs) sequencing. 
Then, a production schedule of PC numbers can be 
represented by a chromosome (solution) in the population 
of MOVNS. The encoding schema of the proposed 
MOVNS algorithm is shown in Fig. 2. 
 
Step 2 (Initialization): Choose a stopping criterion, define 

the set of neighborhood structure (
max, 1:kN k k ), and 

randomly generate the initial population of popN  

chromosomes to represent as precast production 
schedules. Each chromosome represents a solution, which 
is the schedule of PCs sequence in PPSP.  
 

Step 3 (Evaluation): Evaluate objective values, i.e., 
makespan and the total earliness/tardiness penalty of each 
chromosome in the current population pop  using Eqs. (1) 

and (2), respectively. 
 

Step 4 (Update the Pareto front): The tentative set D  where 
all non-dominated solutions are stored separately from the 
current population is updated according to the concept of 
domination. A solution p  is said to dominate solution q  

if and only if      , 1,2,...,i if p f q i q    and  

     , 1,2,...,i if p f q i q   . 

 
Step 5 (Selection): Randomly select an unvisited base solution 

from D , and randomly select a neighborhood structure 

kN  from the following two common neighborhood 

structures. 

(a) Insertion neighborhood (
1N  ): Randomly select two 

positions 
1r   and 

2r   (where 
1 2r r  ) in the 

solution representation. Then remove the PC at 

position 
2r  and insert it before 

1r   in the 

scheduling string, as shown in Fig. 3(a).  

(b) Swap neighborhood (
2N  ): Randomly select two 

positions 
1r  and 

2r  in the solution representation 

and then swap the two PCs at the 
1r  and 

2r  in the 

scheduling string, as shown in Fig. 3(b). 
 
Step 6 (Mark): The selected base solution is marked as 
visited to avoid selection in the next iterations. If all 

solutions in the tentative set D  have been marked as 
visited, then all the marks will be removed.  
 

Step 7 (Shaking): Randomly generate a solution x  from 

the 
kN  neighborhood of current solution x . 

 
Step 8 (Local search): Apply a complete local search in the 

kN   neighborhood of x , denote the obtained local 

optimum with x . 



DOI:10.4186/ej.2020.24.6.139 

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 143 

 

 

 
 

Fig. 1. Flowchart of the two proposed metaheuristics for the PPSP. 

 

 
 

Fig. 2. Chromosome representation. 
 

 
 

Fig. 3. Neighborhood structures. 
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Step 9 (Termination): If the algorithm reaches maximum 
CPU time, end the algorithm. Otherwise, iteratively 
execute Steps 3-8 (update the Pareto front using generated 

solution x ).   
 
Step 10 (Report): The sequences of PCs are represented by 
Pareto optimal solutions, i.e., solutions in the tentative set 

D  of final iteration are reported as optimum schedules 
for precast concrete production. 
 
3.2. Proposed NSGA-II for the PPSP 

As noted earlier, the application and popularity of 
NSGA-II were the reasons for the choice of the algorithm 
in this study. In the algorithm, parent population is ranked 
to create Pareto fronts using the fast non-domination 
sorting and crowding distance procedures. Then, the 
algorithm applies binary tournament selection, crossover 
and mutation operators to generate an offspring 
population as the next generation. Finally, the best 
individuals in terms of non-dominance and diversity are 
selected as the solutions. The main components of the 
algorithm are summarized in Fig. 1(b). 

The detailed steps of the NSGA-II algorithm are 
outlined as follows. 

 
Step 1 (Encoding): Encode the solution of NSGA-II by PCs 
sequencing with the method shown in Fig. 2. 
 
Step 2 (Initialization): Randomly generate initial population 

of popN  chromosomes to represent as precast production 

schedules.  
 
Step 3 (Evaluation): Evaluate objective values of each 
chromosome in the current population pop  using Eqs. (1) 

and (2), respectively. 
 
Step 4 (Rank current population): The current generation 
population is ranked by the following steps. 

(4.1) Non-dominated sort: each chromosome of pop   is 

assigned a rank using the fast non-domination 
sorting procedure described below. 
(4.1.1) Initialize front counter: 0r  .  
(4.1.2) Increase: 1r r  . 
(4.1.3) Find non-dominated solutions from pop  

according to the concept of domination. 
(4.1.4) Assign rank r  to these non-dominated 

solutions. 
(4.1.5) Remove these non-dominated solutions 

from pop . 

(4.1.6) Repeat Steps (4.1.2)-(4.1.5) until pop  is 

empty. 
(4.2) Crowding distance: the crowding distance value for 

each chromosome is calculated as follows. 

(4.2.1)  Initialize the distance of all Z  individuals 

to be zeros: 0id   for 1, 2,...,i Z . 

(4.2.2)  For the objective function 
xf   (

xf is 

makespan or penalty cost), sort the set in 
ascending order. 

(4.2.3)  Let 
1d  and 

Zd  be infinite distance: 

(4.2.4)  For 2,3,..., 1j Z  , let  

1 1  
   

 

( ) ( )

max min

j j

k k
j j

k k

f f
d d

f f
. 

 
(4.3) Crowded-comparison-operator: Once the 

chromosomes are assigned rank by the fast non-
domination and assigned crowding distance, the 

crowded-comparison-operator (
n
) is employed 

in the selection process at various stages of the 
algorithm. Assume that every chromosome i  

has non-domination rank (
ranki  ) and crowding 

distance (
id ), the partial order 

n
 is defined by 

ni j  if (
rank ranki j  ) or ((

rank ranki j  ) and 

i jd d   ) ; then the chromosome i   is selected 

using a binary tournament selection operator. 
 

Step 5 (Generate new population): 
(5.1) Crossover: Generate an offspring population 

crossoverpop  by the following steps.   

(5.1.1) Select a pair of parent solutions from the 
population using binary tournament 
selection operator based on non-
domination rank and crowding distance. 

(5.1.2) Implement a two-point cut crossover 
operator, as shown in Fig. 4(a), to the 
selected pair of parents to generate two 
new child solutions. 

(5.1.3) Evaluate objective values for the two new 
child solutions according to Eqs. (1) and 
(2). 

(5.1.4) Repeat Steps (5.1.1)-(5.1.3) until 
crossoverN  

child solutions are generated through the 

crossover operator among 
crossoverN  

selected parent solutions. 
(5.2) Mutation: Generate an offspring population 

mutationpop  by the following steps. 

(5.2.1) Select a solution from the population 
using binary tournament selection with 
crowded-comparison operator. 

(5.2.2) Implement mutation operator, as shown 
in Fig. 4(b), to the selected solution to 
create a new solution.  

(5.2.3) Evaluate objective values for the new 
child solution according to Eqs. (1) and 
(2). 

(5.2.4) Repeat Steps (5.2.1)-(5.2.3) until 
mutationN  

parent solutions are selected to mutate 

mutationN  child solutions.  
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Step 6 (Update current population): The current population 
pop  is updated for a further run of the algorithm by the 

following steps. 
(6.1) Recombination: The current population pop  is 

merged with its offspring populations 
crossoverpop  

and 
mutationpop :  , ,crossover mutationpop pop pop pop . 

(6.2) Non-dominated sort: Each individual in the 
recombination population pop  is assigned a 

rank based on non-domination criteria. 
(6.3) Crowding distance: Calculate the crowding distance 

value for each individual in the recombination 
population pop . 

(6.4) Selection: Once the recombination population 
pop  is sorted, based on descending crowding 

distance and ascending non-domination rank, 
individuals of the new generation need to be 
selected from the current population. The new 
generation is filled by each subsequent front until 
the population size exceeds the current 
population size and deletes the extra individuals. 

If the population exceeds N  by adding all the 
individuals with rank r , then individuals with 
rank r  are selected based on their crowding 
distance in descending order until the population 

size is  : 1 :pop popN pop pop N . 

 
Step 7 (Termination test): If the algorithm reaches maximum 
generations, terminate the algorithm and return the Pareto 
optimal solutions in the current population; Otherwise, 
return to Step 3 to start the loop for the next iteration. 
 
Step 8 (Report): Similar to the last step of MOVNS in 
solving PPSP, pop  solutions of final iteration are reported 

as optimum schedules for precast production. 
 

4. Computational Experiments 
This paper analyzed the efficiency of the two 

proposed metaheuristics: multi-objective variable 
neighborhood search (MOVNS) algorithm and non-
dominated sorting genetic algorithm II (NSGA-II) for 
solving the PPSP. The performance of these two 
algorithms has been tested by several problem instances 
with results compared against the multi-objective precast 
production scheduling model (MOPPSM) algorithm [4], 

and some recent algorithms successfully solved the FSSP. 
A statistical analysis was also carried out to demonstrate 
and validate the results. 
 
4.1. Problem Instance Sets 

To verify the capability of the proposed algorithms, 
two types of problem instance sets were used. In the first 
problem instance set, a case study of a real industrial 
scheduling problem in a precast production company was 
considered. In the second set, precast production data 
were collected from the literature and used to develop ten 
generated problem instances with different numbers of 
production jobs. 
 
4.1.1. Generated Problem Instances 

To test the performance of the proposed algorithms, 
experiments were conducted on generated problem 
instances. To develop the generated problem instances, 
data were taken from three data sets in the literature. The 
data are illustrated in Table 2 as 26 types of precast 
components (PCs). The first 6 types of PC (out of 26 types) 
were taken from [8], the next 10 types of PC (PC type nos. 
7-16) were taken from [11] and the remaining 10 types of 
PC (PC type nos. 17-26) were taken from [14]. Based on 
the collected data set, ten problem instances with different 
numbers of jobs (up to 100 jobs) were developed, as 
shown in Table 3. In each problem instance, the integer 
number was arbitrarily generated and represented as the 
number of jobs to be produced for each type of PC in the 
precast production process. For example, PPSP03 with 
size of 30 jobs (i.e., 30 customer orders) was generated 
arbitrarily to each type of PC from PC types nos. 1-26 with 
numbers of 0, 0, 0, 0, 0, 0, 4, 2, 2, 5, 3, 3, 2, 2, 5, 2, 0, 0, 0, 
0, 0, 0, 0, 0, 0 and 0, respectively. This sequence of 
numbers indicates that all the operations of precast 
concrete production were performed only for the PC 
types nos. 7-16 with the number of jobs (or the number 
of times to be produced): 4, 2, 2, 5, 3, 3, 2, 2, 5, 2. Each 
job in the PC type was assigned a serial number of the PC 
as to be PC no. Thus, the PC type no. 7 was produced four 
times in the production plan and each was assigned a serial 
number (i.e., PC nos. 1-4). For the PC types nos. 8 and 9, 
each was produced twice in the production plan and each 
was assigned a serial number: PC nos. 5-6 for PC type no. 
8 and PC nos. 7-8 for PC type no. 9. The remaining 7 PC 
types were assigned a serial number (PC nos. 9-30) 
following the manner as described above. 

 

 

 
Fig. 4. Genetic operators’ schemas. 
 

2 4 5 6 7 8 1

2 3 1

Parent A

Parent B

2 5 6 4 7 8 13

3

6 85 4 7

Child

(a) two-point cut crossover 

Before mutation

After mutation

6 7 8

7 2 3 4 5 6 81

3 4 521

(b) shift mutation
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4.1.2. Case Study 
In this paper, data were collected from a leading 

precast concrete production company in Trang Province, 
Thailand. The company produces a variety of precast 
concrete components. From among them, two precast 
concrete products as concrete plank slabs and concrete 
piles were considered. The case study contained a variety 
of customer orders on the two precast products. There 
were a total of 24 customer orders, and each customer 
order was considered as a different job (i.e, different PC 
no.). The jobs were processed in six operations: mold 
assembly, reinforcement setting, concrete pouring, 
concrete curing, demolding, and product finishing. 
Processing times for the different jobs at different 
operations are given in Table 4. Production planning 
scheduling at the company was performed manually by the 
production supervisor. 
 
4.2. Performance Measures 

Various performance metrics have been used for 
numerical comparisons of the non-domination fronts on 
the different multi-objective algorithms. In this paper, the 
following two metrics were chosen. 
 
4.2.1. Distance Metric 

The distance metric is utilized to measure the 

performance of a non-domination solution set 
kS , 

1, 2,...,k A , relative to the reference set *S   (the best 

known Pareto front) and A  is the total number of tested 
algorithms. In this paper, the distance metrics were 
calculated as follows. 
 

Minimum distance (
minD ): 

  *min min min ,xy ky S
D d x S


               (9) 

 

Average distance ( 1RD ): 

 
*

*

1
1 min ,R xy k

y S

D d x S
S 

                    (10) 

 

Maximum distance (
maxD ): 

  *max max min ,xy ky S
D d x S


             (11) 

 

where xyd  represents the Euclidean distance between a 

solution x  and a reference solution y , computed by  

 

          
2 2* * * *

1 1 2 2xyd f y f x f y f x          (12) 

 

where  *

if  is the thi   objective that is normalized 

according to the reference set *S  . The normalization is 
accomplished by the following equation. 
 

 
  min

*

max min
100 i i

i

i i

f x f
f x

f f

 
  

 
                 (13) 

where max

if   and min

if  are the maximum and minimum 

values of the thi  objective in the reference set *S , 

respectively. The reference set *S  consists of the non-
dominated solutions of all the algorithms considered, i.e., 

1

A

kk
S


 . Details of the distance metric on 1RD  and 

maxD  can be found in [39-41], while 
minD  measures the 

performance in an opposite manner to 
maxD . 

More specifically, by using the above distance metrics, 
both the convergence and diversity of a Pareto front set 
can be considered. An algorithm having smaller values is 
better. The distance metric is widely applied to measure 
multi-objective scheduling problems [23-24, 31, 41-44]. 

Unlike the generation distance (GD ) metric in [41, 45-46], 

the measure of 1RD  in Eq. (10) is not the average distance 

from each solution in the solution set 
kS   to its nearest 

reference solution set *S . However, using the reference 

set *S , the metric 1RD  can evaluate the distribution of 

kS  as well as the proximity of 
kS  in the metric GD . 

 
4.2.2. Spread Metric 

The spread ( SP ) metric is employed to estimate the 

extent of the final non-dominated solution set 
kS , 

1, 2,...,k A , obtained by each algorithm. The spread 

metric  kSP S  can be calculated as follows [4, 45-46]: 

     
2

* *

1 11
max min

k kS S
N

k i j i ji jj
SP S f x f x

 

 
  

 
   (14) 

 

where j kx S , for 1,2,..., kj S  . The metric  kSP S  

in Eq. (14) is calculated as the length of the diagonal line 
of the minimum N-dimension hyper-rectangle in the 
solution space. Details of the spread metric can be found 
in [47-48]. 
 
4.3. Parameter Settings and Experimental Setup 

This section demonstrated an experimental study on 
the performance of the proposed approaches. 
Experiments were conducted on the set of problem 
instances described in Section 4.1. To compare the 
performance of MOVNS and NSGA-II, eight recent 
metaheuristic algorithms were assessed as follows. 

 
1. Multi-objective precast production scheduling 

model (MOPPSM) algorithm [4]. 
2. The standard bat algorithm for multiple 

objectives (MOBA) [49]. 
3. The bat algorithm in [50], renamed BA-HFS. 
4. The standard firefly algorithm for multiple 

objectives (MOFA) [51]. 
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Table 2. Production data of precast components (PCs) taken from the literature. 
 

PC  
type 
no. 

Processing times (h) Due 
date 
(h) 

Penalties 

Mold 
assembly 

Reinforcement 
setting 

Concrete 
casting 

Concrete 
curing 

Mold 
stripping 

Product 
finishing 

Earliness 

( i
 ) 

Tardiness  

( i
 ) 

1 1 0.8 1.2 12 1.5 0.5 28 2 10 

2 1.7 2 2 12 1.5 2.5 28 2 10 

3 0.4 0.5 0.6 12 0.5 0 28 1 10 

4 0.3 0.4 0.5 12 0.4 1 28 1 10 

5 1.5 1.8 1.2 12 1.5 1.5 52 2 10 

6 1.5 1.6 1.5 12 1.8 0.8 32 2 10 

7 2 1.6 2.4 12 2.5 1 112 2 10 

8 3.4 4 4 12 2.4 5 112 2 10 

9 0.8 1 1.2 12 0.8 0 112 1 10 

10 0.6 0.8 1 12 0.6 2 112 1 10 

11 3 3.6 2.4 12 2.4 3 208 2 10 

12 3 3.2 3 12 3 1.6 128 2 10 

13 1.3 0.9 2.4 12 1.9 1.8 144 2 10 

14 1.7 1.4 1.1 12 0.9 0.7 144 2 20 

15 2.2 1.8 1.2 12 2.3 0.7 144 1 20 

16 1.6 3.2 2.3 12 2.1 2.7 240 1 20 

17 1.5 2 0.5 8 1 0.5 164 2 10 

18 1 2 0.4 8 1 0.5 140 2 10 

19 1 1.5 0.5 8 0.5 0.5 164 2 10 

20 0.5 1 0.3 8 0.3 0.5 160 2 10 

21 1 0.8 1 8 1.5 0.5 160 2 10 

22 0.5 2 0.4 8 0.5 0.5 164 2 10 

23 1.5 2 0.5 8 1 0.4 140 2 10 

24 0.5 2 0.3 8 0.6 0.3 164 2 10 

25 1.5 1.8 1.2 8 1.5 1.5 140 2 10 

26 0.4 0.5 0.6 8 0.5 0.5 164 2 10 
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Table 3. Problem instances and numbers of customer orders for each PC type. 

Problem instance Size of instance 
PC type no. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

PPSP01 10 jobs 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

PPSP02 20 jobs 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 

PPSP03 30 jobs 0 0 0 0 0 0 4 2 2 5 3 3 2 2 5 2 0 0 0 0 0 0 0 0 0 0 

PPSP04 40 jobs 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 2 1 2 2 2 2 1 

PPSP05 50 jobs 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 

PPSP06 60 jobs 2 3 4 1 5 1 4 1 2 5 2 1 2 2 2 1 3 4 1 2 1 2 1 4 2 2 

PPSP07 70 jobs 1 3 5 2 3 4 1 2 3 1 2 3 1 3 6 2 5 2 3 1 4 1 4 2 5 1 

PPSP08 80 jobs 1 2 1 5 4 2 6 2 3 2 4 3 5 4 4 2 4 3 1 5 3 4 1 4 3 2 

PPSP09 90 jobs 6 3 4 5 7 5 6 4 5 10 7 5 4 5 12 2 0 0 0 0 0 0 0 0 0 0 

PPSP10 100 jobs 1 5 2 5 7 5 9 4 5 3 7 6 5 5 2 4 2 5 3 2 1 5 1 3 2 1 
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5. Two variants of the discrete firefly algorithm, 
renamed DFA-1 [52] and DFA-2 [53]. 

6. The standard cuckoo search algorithm for 
multiple objectives (MOCS) [54]. 

7. Hybrid CS (HCS) [55]. 
 
All algorithms were implemented in MATLAB 

software and executed on a personal computer with an 
Intel Core i5 3.3GHz Processor and 4GB of memory. 
Table 5 lists the main parameter settings involved in each 
algorithm. To test the impact of the parameters on the 
performance, three parameter values of MOVNS and 27 
different parameter combinations for NSGA-II and 
MOPPSM were obtained. Algorithms with each 
combination were run for all problem instances, based on 

extensive experiments. For the MOPPSM, values of 
eliteN  

and 
tk  were set to 4 and 2, respectively for all instances 

according to [4]. The best results of the algorithms 
measured using the above metrics were achieved over all 

problem instances with parameter settings:  150popN  

for the MOVNS, ( popN , pc , pm )    (150, 0.9, 0.3) for 

the NSGA-II, and ( popN , pc , pm ) = (100, 0.7, 0.5) for 

the MOPPSM.  
Parameter settings for MOBA, BA-HFS, MOFA, 

DFA-2, MOCS, and HCS employed the default values 
taken from the related literature, while parameter settings 
for DFA-1 were obtained by testing different types of 
parameters based on the suggested ranges in [52] over the 
PPSP instances. To fairly compare all the algorithms, this 
paper used the maximum CPU times (in seconds, s) as the 
termination criterion of the algorithm. Maximum CPU 
time is a widely used criterion for performance 
comparison of different metaheuristics [31, 56-58]. The 
maximum CPU times for solving each problem instance 
are shown in Table 6.  
 
4.4. Computational Results and Comparison 

Based on the parameter settings and the termination 
criterion described in subsection 4.3, each problem 
instance was conducted for 20 trials (runs) for each 
algorithm. In this paper, the total number of tested 
algorithms ( A ) was equal to 10. Computational results of 
the ten algorithms are illustrated in Tables 7-10, in which 

*S  is the reference set that consists of all non-dominated

Table 4. Precast production data of a real industrial scheduling problem: Case Study. 

PC 
no. 

Name 

Processing times (h) Due 
date 
(h) 

Penalties 

Mold 
assembly 

Reinforcement 
setting 

Concrete 
casting 

Concrete 
curing 

Mold 
stripping 

Product 
finishing 

Earliness 

( i
 ) 

Tardines

s ( i
 ) 

1 Plank Slabs 0.5 0.5 1 22 2 0.8 96 0.4 4.2 

2 Plank Slabs 0.5 0.5 1 22 2 0.8 96 0.4 4.2 

3 Plank Slabs 0.5 0.5 1 22 2 0.8 192 0.4 4.2 

4 Plank Slabs 0.5 0.5 1 22 2 0.8 192 0.4 4.2 

5 Plank Slabs 0.5 0.5 1 22 2 0.8 120 0.4 4.2 

6 Piles 0.5 1.25 1 27 2 0.5 48 1.7 4.2 

7 Plank Slabs 0.5 0.5 1 22 2 0.8 120 0.4 4.2 

8 Plank Slabs 0.5 0.5 1 22 2 0.8 144 0.4 4.2 

9 Piles 0.5 1.25 1 27 2 0.5 240 2.1 4.2 

10 Piles 0.5 1.25 1 27 2 0.5 168 1.1 4.2 

11 Piles 0.5 1.25 1 27 2 0.5 336 1.1 4.2 

12 Piles 0.5 1.25 1 27 2 0.5 216 1.1 4.2 

13 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2 

14 Piles 0.5 1.25 1 27 2 0.5 144 2.1 4.2 

15 Piles 0.5 1.25 1 27 2 0.5 192 2.1 4.2 

16 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2 

17 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2 

18 Piles 0.5 3 1.5 27 2 0.5 288 3.8 10.5 

19 Piles 0.5 3 1.5 27 2 0.5 336 3.8 10.5 

20 Piles 0.5 3 1.5 27 2 0.5 336 3.8 10.5 

21 Plank Slabs 0.5 0.5 1 22 2 0.8 48 0.4 4.2 

22 Piles 0.5 3 1.5 27 2 0.5 360 5.3 10.5 

23 Piles 0.5 3 1.5 27 2 0.5 360 8.7 10.5 

24 Plank Slabs 0.5 0.5 1 22 2 0.8 168 0.4 4.2 
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Table 5. Parameter settings of all algorithms. 

Parameter setting MOVNS NSGA-II MOPPSM [4] MOBA [49] BA-HFS [50] MOFA [51] DFA-1 [52] DFA-2 [53] MOCS [54] HCS [55] 

Population size (
popN ) (50, 100, 150) (50, 100, 150) (50, 100, 150) 50 100 50 50 10 50 20 

Crossover rate ( pc ) - (05, 0.7, 0.9) (05, 0.7, 0.9) - - - - - - - 

Mutation rate ( pm ) - (0.1, 0.3, 0.5) (0.1, 0.3, 0.5) - - - - - - - 

Elite number (
eliteN ) - - 4 - - - - - - - 

Termination value of 

local search (
tk ) 

- - 2 - - - - - - - 

Loudness (
iA ) - - - 0.9 0.9 - - - - - 

Pulse rate (
ir ) - - - 0.9 0.9 - - - - - 

Randomization 
parameter ( ) 

- - - - - 0.25 1 0.25 - - 

Light absorption (  ) - - - - - 1 0.5 1 - - 

Attractiveness of 

firefly (
0 ) 

- - - - - 1 1 0.2 - - 

Discovery probability   

(
ap ) 

- - - - - - - - 0.5 0.25 

Lévy exponent (  ) - - - - - - - - 1.5 1.5 

 

Table 6. Maximum CPU times for terminating the tested algorithms in each instance. 

Problem instance PPSP01 PPSP02 PPSP03 PPSP04 PPSP05 PPSP06 PPSP07 PPSP08 PPSP09 PPSP10 Case Study 

Size of instance (jobs) 10 20 30 40 50 60 70 80 90 100 24 

CPU time (s) 15 70 120 300 600 600 600 600 600 600 70 
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solutions of 
10

1 kk
S


. 

1S , 
2S , 

3S , 
4S , 

5S , 
6S , 

7S , 
8S , 

9S , 

10S  were represented the non-dominated set of MOVNS, 

NSGA-II, MOPPSM, MOBA, BA-HFS, MOFA, DFA-1, 
DFA-2, MOCS and HCS, respectively. Then, values of the 

indicators SP , 1RD , 
minD  and 

maxD  were calculated as 

the corresponding metric values of 
kS . Graphical results 

of all metrics are illustrated in Fig. 5.  
For performance comparison, the paired-sample t-

test was conducted to compare MOVNS with the other 
nine algorithms based on four of the aforementioned 
indicators. Table 11 shows the pvalue results of the above 
tests for the null hypothesis. There was no difference in 
the mean value of each indicator for a paired algorithm. 
The term “Paired-variable (A, B)” means that a paired t-
test was conducted on the paired algorithm of (A, B) to 
judge whether algorithm B gave a better sample mean than 
algorithm A. Using a significance level of 0.05, the result 
was considered statistically significant if the corresponding 
pvalue was less than 0.05, indicating that A performed 
better than B in the statistical sense. 

 
4.4.1  Comparisons of the Proposed Algorithms 

Results in Tables 7-11 indicated that the MOVNS 
was superior to NSGA-II.  For the metric SP , the 
algorithm accepts only dominating solutions (or solutions 
with larger improvement on objectives) with a small 
search area in replacing if the value of SP becomes smaller. 
Conversely, a larger value of the spread can be expected if 
solutions are accepted from a larger area. As shown in 
Table 7, results showed that MOVNS produced more or 
a similar extent of non-dominated solutions than NSGA-
II for almost all problem instances, except for the PPSP04. 

As shown in Table 8, 1RD  of MOVNS was less than 

1RD  of NSGA-II for 7 problem instances, while 1RD  of 

both algorithms was equal to 0 for 2 problem instances. 

The zero value of 1RD  indicated that all members of *S  

were generated by MOVNS and NSGA-II. Because most 

of the solutions in *S  were provided by MOVNS, the 

1RD value of NSGA-II was greater than that of MOVNS.  

As shown in Tables 9 and 10, MOVNS gave better 

results on 
minD  than NSGA-II for all problem instances, 

while 
maxD  of NSGA-II was greater than 

maxD  of 

MOVNS for almost all problem instances, except for 
PPSP06. Moreover, results in Table 11 also showed that 
the MOVNS performance was statistically superior to 
NSGA-II. Thus, it can be concluded that the performance 
of MOVNS was better than the performance of NSGA-
II, and MOVNS was reasonable and effective to solve the 
PPSP. 

 
4.4.2  Comparisons among Eight Algorithms 

From Tables 7-11, it can be concluded that the 
MOVNS outperformed MOPPSM, MOBA, BA-HFS, 
MOFA, DFA-1, DFA-2, MOCS, and HCS. As shown in 

Table 10, MOVNS provided all members of the set *S on 

3 problem instances, MOPPSM obtained the whole set *S  
of two problem instances and MOCS obtained the whole 

set *S  for only one problem instance, while MOBA, BA-
HFS, MOFA, DFA-1, and DFA-2 did not generate any 

members of *S   on 11 problem instances. MOVNS 

obtained more members of *S  than MOPPSM, MOBA, 
BA-HFS, MOFA, DFA-1, DFA-2, MOCS, and HCS on 4, 
11, 11, 8, 9, 11, 9 and 9 problem instances, respectively.  
In Tables 8-10, the average values of metrics solutions of 
MOBA, BA-HFS, DFA-2, MOCS, and HCS were located 

far away from the members of the set *S  .  MOPPSM 
performed better than NSGA-II, MOFA and DFA-1 on 

1RD and 
maxD ; however, 

minD of MOPPSM was greater 

than that of NSGA-II. Statistical analysis results in Table 
11 showed that MOVNS gave significantly better 

performance than MOPPSM on two metrics: SP  and 

minD . Moreover, MOVNS was superior to MOFA, DFA-

1, MOCS and HCS on four metrics, while it was inferior 

to MOBA, BA-HFS, and DFA-2 on only the metric SP . 
This result further justified the advantages of MOVNS 
according to the analysis of performance comparisons. 

The performance comparison of all algorithms 
showed that MOVNS outperformed NSGA-II, 
MOPPSM, MOBA, BA-HFS, MOFA, DFA-1, DFA-2, 
MOCS, and HCS. The good performances of MOVNS 
mainly resulted from two reasons. The first related to its 
simplicity of the basic scheme and the non-dominated set 
updating process. The proposed MOVNS produced more 
non-dominated solutions. The second was that the 
proposed MOVNS implemented more than one 
neighborhood structure randomly to explore and exploit 
the solution space, while other comparing algorithms 
employed only one neighborhood structure to improve 
the convergence speed for the Pareto solution. Therefore, 
the advantages of MOVNS result from its simplicity in 
structure, strong local search ability and variable 
neighborhood mechanism. Thus, the MOVNS was shown 
to be a very competitive method for the considered PPSP. 
 

5. Conclusions 
Precast production scheduling plays an important role 

for decision-making in the precast fabrication industry. In 
this paper, the multi-objective precast production 
scheduling problem (PPSP) model with two conflicting 
objectives of optimizing makespan and total penalty costs 
of earliness and tardiness was investigated. A MOVNS 
was presented and tested on ten generated problem 
instances and a real case study of an industrial scheduling 
problem in a precast concrete company. The MOVNS 
metaheuristic was compared with the other algorithms, 
namely NSGA-II, MOPPSM, MOBA, BA-HFS, MOFA, 
DFA-1, DFA-2, MOCS, and HCS. Computational results 
showed that the MOVNS provided better solutions than 
the other algorithms in almost all problem instances.  Thus, 
the MOVNS was determined as a promising approach to 
solve the PPSP.  The MOVNS metaheuristic can provide
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Table 7. Results of ten algorithms on SP . 

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS 

PPSP01 138.37 138.37 138.37 104.72 136.05 138.76 138.91 140.69 138.37 138.37 

PPSP02 100.98 67.64 72.44 68.37 119.75 102.48 57.18 60.80 70.63 73.73 

PPSP03 285.16 97.50 97.80 104.13 546.81 120.58 69.47 532.29 98.05 96.47 

PPSP04 154.08 155.29 154.65 93.76 103.49 131.54 112.15 101.29 142.20 24.95 

PPSP05 94.97 44.33 18.84 101.99 103.82 131.54 105.98 139.12 122.83 95.49 

PPSP06 161.41 92.15 100.15 550.45 43.56 131.54 154.19 89.07 99.43 91.36 

PPSP07 141.42 100.69 100.11 131.29 79.93 101.57 150.65 109.63 98.64 57.71 

PPSP08 161.41 135.09 130.33 131.29 91.07 54.48 101.84 85.39 14.58 82.01 

PPSP09 304.14 93.86 125.48 211.91 455.34 168.90 102.97 139.57 96.85 93.64 

PPSP10 216.71 75.10 143.20 578.98 92.39 96.77 98.77 49.07 40.27 102.35 

Case Study 104.93 104.93 104.93 96.93 111.61 41.99 41.99 118.27 41.99 104.93 

Average 169.42 100.45 107.85 197.62 171.26 110.92 103.10 142.29 87.62 87.36 

 

Table 8. Results of ten algorithms on 1RD . 

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS 

PPSP01 0.00 0.00 0.00 7.94 1.91 0.10 0.06 1.15 0.00 0.00 

PPSP02 0.00 1.22 0.53 16.22 15.63 0.55 0.64 8.34 1.41 0.12 

PPSP03 3.78 7.68 0.33 12.62 31.74 9.37 13.21 23.89 23.17 13.10 

PPSP04 1.87 13.15 4.77 15.35 8.04 1.25 9.36 5.22 7.85 24.54 

PPSP05 0.07 37.83 30.98 15.84 11.55 6.36 8.86 8.84 3.68 16.83 

PPSP06 9.01 2.94 1.55 48.69 10.45 6.47 7.73 2.53 5.47 15.90 

PPSP07 0.48 11.37 1.15 13.75 18.27 10.22 6.79 18.76 10.02 19.15 

PPSP08 9.84 9.49 5.87 12.20 12.80 9.63 8.95 10.85 24.81 22.40 

PPSP09 4.27 12.43 1.85 22.07 19.80 9.83 7.75 25.28 18.30 11.92 

PPSP10 2.13 10.33 1.95 22.30 13.12 15.18 9.90 39.69 31.64 14.70 

Case Study 0.00 0.00 0.00 16.99 8.27 0.76 0.76 5.11 0.76 0.00 

Average 2.86 9.68 4.45 18.54 13.78 6.34 6.73 13.61 11.56 12.61 
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Table 9. Results of ten algorithms on 
minD . 

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS 

PPSP01 0.00 0.00 0.00 1.09 0.52 0.00 0.00 0.52 0.00 0.00 

PPSP02 0.00 0.03 0.02 1.61 9.85 0.33 0.52 3.90 0.11 0.07 

PPSP03 0.00 0.06 0.01 10.79 9.98 0.51 1.37 3.72 0.02 0.48 

PPSP04 0.00 0.03 0.00 2.51 1.67 0.10 0.09 0.23 0.00 0.25 

PPSP05 0.07 0.30 0.10 0.43 5.73 0.31 0.09 2.88 0.45 0.11 

PPSP06 0.00 0.86 0.04 11.56 1.41 0.25 0.01 1.42 0.07 0.19 

PPSP07 0.00 0.00 0.00 1.57 5.23 0.00 0.01 0.00 0.30 0.43 

PPSP08 0.00 0.05 0.81 2.41 10.22 0.39 1.32 0.48 2.05 1.02 

PPSP09 0.00 1.05 1.60 1.49 1.41 1.76 0.74 0.04 1.60 0.75 

PPSP10 0.00 0.74 1.03 6.87 0.98 1.19 0.97 2.89 1.26 2.19 

Case Study 0.00 0.00 0.00 9.37 8.27 0.76 0.76 0.99 0.76 0.00 

Average 0.01 0.28 0.33 4.52 5.02 0.51 0.53 1.55 0.60 0.50 

 

Table 10. Results of ten algorithms on 
maxD . 

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS 

PPSP01 0.00 0.00 0.00 53.33 2.86 0.35 0.77 2.91 0.00 0.00 

PPSP02 0.00 27.79 29.63 70.37 26.60 1.91 1.93 25.37 29.63 0.16 

PPSP03 26.20 90.13 27.29 13.14 73.51 36.34 86.70 87.65 88.91 92.05 

PPSP04 8.30 31.93 16.43 37.30 12.17 7.79 52.06 26.76 24.41 94.71 

PPSP05 0.07 75.78 82.42 58.58 50.85 44.92 52.98 25.60 20.75 89.63 

PPSP06 12.67 8.68 76.53 96.54 80.28 21.99 22.04 4.85 9.46 91.93 

PPSP07 18.44 88.19 10.28 22.98 31.82 72.17 22.04 55.26 94.40 96.12 

PPSP08 14.69 29.34 22.41 39.62 16.64 64.25 52.98 81.37 85.76 96.65 

PPSP09 31.49 87.03 17.15 57.83 62.80 33.80 52.98 96.02 68.39 88.72 

PPSP10 2.53 65.43 8.69 55.29 56.32 48.13 52.98 80.34 88.18 65.12 

Case Study 0.00 0.00 0.00 39.23 8.27 0.76 0.76 25.73 0.76 0.00 

Average 10.40 45.85 26.44 49.47 38.37 30.22 36.20 46.53 46.42 65.01 
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(a) Values of SP  

 

 
 

(b) Values of 1RD  

 

 
 

(c) Values of 
minD  

 

 
 

(d) Values of 
maxD  

 

Fig. 5. Performance comparison of the ten algorithms using the SP , 1RD , 
minD and 

maxD  metrics. 
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production schedules to assist managers in decision-
making on precast concrete production. 

In the future, extensions of MOVNS will be used to 
solve the PPSP by considering more complex 
manufacturing disturbance situations such as rush order 
arrival, due date change, uncertain processing time, and 
buffer size. Some novel methods to enhance performance 
including global search and intensification strategies on 
neighborhood search will also be considered. 
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