

Article

A Multi-Objective Variable Neighborhood Search
Algorithm for Precast Production Scheduling

Lehuang Zonga and Wanatchapong Kongkaewb,*

Department of Industrial Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla
90110, Thailand
E-mail: a2795243384@qq.com, bwanatchapong.k@psu.ac.th (Corresponding author)

Abstract. In real life, precast production schedulers face the challenges of creating a
reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and
objectives encountered in the precast production scheduling problem (PPSP) were
addressed, with the goal to minimize makespan and total earliness and tardiness penalties.
A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the
performance was tested on 11 problem instances. Ten of these were generated using precast
concrete production information taken from the literature. One real industrial problem from
a precast concrete company was considered as a case study. Extensive experiments were
conducted, and the spread and distance metrics were used to evaluate the quality of the non-
dominated solutions set. Statistical analysis demonstrated that the result was statistically
convincing. Computational results showed that the proposed MOVNS algorithm was
significantly better when compared to the other nine algorithms. Therefore, the proposed
MOVNS algorithm was a very competitive method for the considered PPSP.

Keywords: Precast production scheduling, multi-objective, metaheuristic, variable
neighborhood search, spread and distance.

ENGINEERING JOURNAL Volume 24 Issue 6
Received 19 November 2019
Accepted 12 October 2020
Published 30 November 2020
Online at https://engj.org/
DOI:10.4186/ej.2020.24.6.139

DOI:10.4186/ej.2020.24.6.139

140 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

1. Introduction
Construction industries face problems of delay, cost

overruns, low quality, poor safety records and
environmental impacts because of risk, uncertainties,
labor complexity and recent dynamic change [1-2]. To
overcome these problems, the industrialized precast
construction technique has developed rapidly since its
inception in the 1950’s. Precast construction is different
from traditional construction methods and requires
components such as beams, columns and girders to be
prefabricated in factories before transportation and
installation on-site according to the erection schedule.
Production scheduling has a dramatic impact on the
success of precast fabrication because it involves making
accurate decisions on when the many precast components
(PCs) need to be produced to meet their due dates of
delivery. Unfortunately, in practice, precast production
schedules are arranged by experience-based estimation as
a subjective approach that frequently results in inefficient
precast manufacturing processes [3-6]. Therefore, to
eliminate the unexpected consequences of manually
arranged production schedules, modeling and
computational techniques are now used to consider more
realistic constraints prevailing in the precast industry, such
as off-normal working time and non-preemptible
fabrication processes [7-8], limited workers and cranes [9],
buffer size between production stations [3-4, 10], mold
availability [11], different concrete formulas [12] and
multiple production lines [13].

Most previous investigations used the precast
production scheduling problem (PPSP) model based on
the traditional flow shop scheduling problem (FSSP)
model that was defined as a non-deterministic polynomial-
time hard (NP-hard) problem [6-7, 11] and solved by
genetic algorithm (GA) based optimization methods [4, 6-
11, 13-14]. Other heuristics such as Palmer’s heuristic [15],
Gupta’s heuristic [16], the Campbell Dudek Smith (CDS)
heuristic [17], rapid access (RA) heuristic [18], earliest due
date (EDD) rule, as soon as possible rule, shortest
processing time (SPT) rule, and least slack time rule have
also been developed to provide performance verification
of the algorithms to solve the PPSP [4, 7, 8, 13, 19]. Results
indicated that variants of GA metaheuristics provided
better solutions than the heuristics and dispatching rules
for solving the PPSP. However, previous studies ignored
other competitive metaheuristic algorithms such as multi-
objective variable neighborhood search (MOVNS) and
non-dominated sorting genetic algorithm II (NSGA-II),
while GA based metaheuristics were not compared with
any of these algorithms.

The variable neighborhood search (VNS) algorithm
[20-21] is a local search-based metaheuristic that was first
proposed in 1997. By employing systematic changes of
neighborhood, VNS is able to explore increasingly distant
neighborhoods of current incumbent solutions to obtain
promising results. Due to its simplicity and powerful
search ability, VNS approaches have been successfully
applied to solve various scheduling problems in both
single and multiple objectives, including the flow shop

scheduling problem [22-26], the job shop scheduling
problem [27-30], and the single machine scheduling
problem [31]. Similarly, the NSGA-II, first introduced by
Deb et al. [32] is one of the most proficient evolutionary
algorithms used for solving multi-objective optimization
problems. The NSGA-II has been successfully applied to
solve flow shop and job shop scheduling problems [23-24,
33-34]. Although the VNS and NSGA-II have been
successfully applied to solve many scheduling problems,
an extensive literature review revealed little evidence, if
any, as to whether VNS and NSGA-II have been applied
to solve the PPSP. Therefore, the objective of this study
was to extend the application of VNS and NSGA-II
algorithms to solve the PPSP.

Ko and Wang [4] applied the multi-objective genetic
local search (MOGLS) algorithm of [35] to solve the PPSP.
The MOGLS algorithm successfully searched for
optimum production schedules and outperformed seven
methods, including the Palmer, Gupta, CDS and RA
heuristics, the EDD rule, the vector evaluated genetic
algorithm (VEGA) and the constant weight genetic
algorithm (CWGA). Therefore, here, the MOGLS was
considered as a comparative algorithm to solve the PPSP
due to its competitive performance.

The main contributions of this study are summarized
as follows. Firstly, MOVNS and NSGA-II were
implemented to solve the multi-objective PPSP based on
the mathematical model proposed in [7]. The application
of MOVNS and NSGA-II also fills the research gap since
these algorithms have never been applied before to solve
the PPSP. Secondly, this study extended the PPSP size up
to 100 jobs, while previous studies only considered the
PPSP for 6 jobs [7], 10 jobs [3-4, 6, 10-11, 13-14], 30 jobs
[4], 36 jobs [14] and 44 jobs [7]. A real-world PPSP was
also provided as a case study. Lastly, distance metrics were
applied to measure all tested algorithms to solve the PPSP.
Distance metrics consider both the diversity and
convergence of population solutions, while the spread and
spacing metrics used in [4] only considered diversity.
Moreover, to demonstrate the competitive performance
over algorithms proposed in previous studies to solve the
FSSP, some recent metaheuristic algorithms such as
cuckoo search algorithm, bat algorithm, and firefly
algorithm were used to compare the search capability.

The remainder of this paper is organized as follows:
Section 2 discusses the mathematical model of the PPSP.
Section 3 describes the proposed MOVNS and NSGA-II
algorithms for solving the PPSP. Section 4 demonstrates
the experiments and computational results of the
proposed approaches, while conclusions and
recommendations are presented in Section 5.

2. Precast Production Scheduling Problem
Warszawski and Ishai [36] divided precast production

systems into two basic types, namely the stationary
production system and the traveling production system. In
the stationary production system, all basic production
operations are performed at fixed locations and a
comprehensive workforce is involved. In the traveling

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 141

system, molds are moved among different workstations
and diverse operations are processed by different
workforces using specialized tools and methods. Precast
production processes using specialized methods can be
broken down into six tasks, i.e., (1) mold assembly, (2)
reinforcement setting, (3) concrete pouring, (4) concrete
curing, (5) demolding, and (6) product finishing. With the
traditional FSSP, each job consists of operations and each
operation is executed on a specific machine. This cannot
be applied to the precast production scheduling problem
(PPSP) directly because some practical constraints
encountered in the industry are disregarded in FSSP. A
PPSP model based on FSSP was proposed by Chan and
Hu [7] with the following assumptions.

Firstly, there is no distinction between normal
working time and off-normal working time in the
traditional FSSP; however, interruptions inevitably

happen in precast plants when workers punch out after
working time, which is normally 8 hours a day.
Furthermore, the labor force needs to be paid to work
overtime within the limited hours (assuming no more than
4 hours) if necessary. Secondly, all operations in the
traditional FSSP are uninterruptible. This means that an
operation once started cannot be interrupted until
completion. Operations in precast plants can be divided
into interruptible operations (mold assembly,
reinforcement setting, demolding and product finishing)
and uninterruptible operations (concrete pouring and
concrete curing). Interruptible operations can be
interrupted and continued to execute the unfinished part
on the next day if they cannot be completed within normal
working time; this causes inevitable interruption time (off-
normal working time). A description of notations used in
the mathematical formulation is listed in Table 1.

In practice, production schedules are constructed to

minimize production duration and cost. Minimization of
makespan, which is defined as the total time needed to
complete all jobs, is a commonly-used objective to
estimate the performance of PPSP models [3-4, 6-10, 13-
14]. Earliness and tardiness are related to job due dates.
Certain penalty costs are incurred when a job is completed
either before or after its due date. Minimizing the total
penalty costs of earliness and tardiness is, therefore,
important to meet the just-in-time production control
policy [37]. In this research, minimizing makespan and
minimizing the total penalty costs of earliness and
tardiness were computed by Eqs. (1) and (2) and applied
as multi-objective functions in the PPSP model.

To handle the constraint on interruptible operations,
Eq. (3) was utilized to calculate the completion time of
interruptible processes. An uninterruptible operation such
as concrete pouring would have to be postponed to the
next working day if it could not be finished within the
working hours or allowable overtime. The curing process
is also an uninterruptible operation. Curing of the concrete
occurs after pouring and no labor is required. A fast cure
generally takes a few hours, while steam curing can be
completed within 12-16 hours. The completion time of
concrete pouring and curing was computed by Eqs. (4)-
(6), respectively. The accumulated completion time and
the working days were calculated from Eqs. (7) and (8),
respectively. More details of the PPSP model are available
in [4, 7-8, 11, 14].

Objectives:

 1 nmf x c (1)

     2 1 1
max 0, max 0,

n n

i i i i i ii i
f x d c c d 

 
        
     (2)

Table 1. Mathematical notations and definitions.

Notation Definition

n total number of precast components (PCs)

m total number of workstations

i serial number of the PC (called “job” in traditional FSSP model).

j serial number of the workstation (called “machine” in traditional FSSP model).

ijt processing time of the thi PC on the thj workstation

ijc

completion time of the thi PC on the thj workstation

id due date of the thi PC

D working days

i unit earliness penalty for the thi PC

i unit tardiness penalty for the thi PC

T accumulated completion time

WT normal working time of a workday (8 hours)

NT off-normal working time

AT allowable overtime (assumed to be limited to 4 hours in one workday)

DOI:10.4186/ej.2020.24.6.139

142 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

Constraints:

if 24
, 1,2,..., ; 1,2,5,6

if 24

W

ij

N W

T T D T
c i n j

T T T D T

 
  

  
 (3)

 

if 24
, 1, 2,..., ; 3

24 1 if 24

W A

ij

ij W A

T T D T T
c i n j

D t T D T T

  
  

    
 (4)

3 4

*

i iT c t  , 1, 2,...,i n (5)

 

   

* * *

*

if 24 1 or 24
, 1, 2,..., ; 4

24 1 if 24 24 1

W

ij

W

T T D T D T
c i n j

D D T T D

    
  

    
 (6)

    1 1
max , iji j i j

T c c t
 

  , 2,3,..., ; 2,3,4,5,6i n j  (7)

 integer 24D T (8)

3. Proposed Multi-Objective Algorithms for the
PPSP
In this paper, two metaheuristic algorithms as the

multi-objective variable neighborhood search (MOVNS)
and a non-dominated sorting genetic algorithm II (NSGA-
II) were first implemented to find the set of Pareto optimal
solutions for the PPSP. Figure 1 illustrates a flowchart of
these algorithms with details described in the following
subsections.

3.1. Proposed MOVNS for the PPSP

Variable neighborhood search (VNS) is a local
search-based metaheuristic that was originally proposed
by Mladenović and Hansen [20]. It is based on the
principle of systematic changes of neighborhood in both
the descent phase to find a local optimum and the
perturbation phase to escape from the corresponding local
minimum valley. Thus, VNS does not follow a trajectory
but explores increasingly distant neighborhoods of the
current incumbent solutions to obtain promising
neighboring solutions. The MOVNS algorithm used here
was developed based on Geiger’s algorithm [38] and the
flowchart of MOVNS is depicted in Fig. 1(a).

The main steps of the developed MOVNS algorithm
outline are as follows.

Step 1 (Encoding): This study encodes production
scheduling by precast components (PCs) sequencing.
Then, a production schedule of PC numbers can be
represented by a chromosome (solution) in the population
of MOVNS. The encoding schema of the proposed
MOVNS algorithm is shown in Fig. 2.

Step 2 (Initialization): Choose a stopping criterion, define

the set of neighborhood structure (
max, 1:kN k k), and

randomly generate the initial population of popN

chromosomes to represent as precast production
schedules. Each chromosome represents a solution, which
is the schedule of PCs sequence in PPSP.

Step 3 (Evaluation): Evaluate objective values, i.e.,
makespan and the total earliness/tardiness penalty of each
chromosome in the current population pop using Eqs. (1)

and (2), respectively.

Step 4 (Update the Pareto front): The tentative set D where
all non-dominated solutions are stored separately from the
current population is updated according to the concept of
domination. A solution p is said to dominate solution q

if and only if      , 1,2,...,i if p f q i q   and

     , 1,2,...,i if p f q i q   .

Step 5 (Selection): Randomly select an unvisited base solution

from D , and randomly select a neighborhood structure

kN from the following two common neighborhood

structures.

(a) Insertion neighborhood (
1N): Randomly select two

positions
1r and

2r (where
1 2r r) in the

solution representation. Then remove the PC at

position
2r and insert it before

1r in the

scheduling string, as shown in Fig. 3(a).

(b) Swap neighborhood (
2N): Randomly select two

positions
1r and

2r in the solution representation

and then swap the two PCs at the
1r and

2r in the

scheduling string, as shown in Fig. 3(b).

Step 6 (Mark): The selected base solution is marked as
visited to avoid selection in the next iterations. If all

solutions in the tentative set D have been marked as
visited, then all the marks will be removed.

Step 7 (Shaking): Randomly generate a solution x from

the
kN neighborhood of current solution x .

Step 8 (Local search): Apply a complete local search in the

kN neighborhood of x , denote the obtained local

optimum with x .

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 143

Fig. 1. Flowchart of the two proposed metaheuristics for the PPSP.

Fig. 2. Chromosome representation.

Fig. 3. Neighborhood structures.

DOI:10.4186/ej.2020.24.6.139

144 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

Step 9 (Termination): If the algorithm reaches maximum
CPU time, end the algorithm. Otherwise, iteratively
execute Steps 3-8 (update the Pareto front using generated

solution x).

Step 10 (Report): The sequences of PCs are represented by
Pareto optimal solutions, i.e., solutions in the tentative set

D of final iteration are reported as optimum schedules
for precast concrete production.

3.2. Proposed NSGA-II for the PPSP

As noted earlier, the application and popularity of
NSGA-II were the reasons for the choice of the algorithm
in this study. In the algorithm, parent population is ranked
to create Pareto fronts using the fast non-domination
sorting and crowding distance procedures. Then, the
algorithm applies binary tournament selection, crossover
and mutation operators to generate an offspring
population as the next generation. Finally, the best
individuals in terms of non-dominance and diversity are
selected as the solutions. The main components of the
algorithm are summarized in Fig. 1(b).

The detailed steps of the NSGA-II algorithm are
outlined as follows.

Step 1 (Encoding): Encode the solution of NSGA-II by PCs
sequencing with the method shown in Fig. 2.

Step 2 (Initialization): Randomly generate initial population

of popN chromosomes to represent as precast production

schedules.

Step 3 (Evaluation): Evaluate objective values of each
chromosome in the current population pop using Eqs. (1)

and (2), respectively.

Step 4 (Rank current population): The current generation
population is ranked by the following steps.

(4.1) Non-dominated sort: each chromosome of pop is

assigned a rank using the fast non-domination
sorting procedure described below.
(4.1.1) Initialize front counter: 0r  .
(4.1.2) Increase: 1r r  .
(4.1.3) Find non-dominated solutions from pop

according to the concept of domination.
(4.1.4) Assign rank r to these non-dominated

solutions.
(4.1.5) Remove these non-dominated solutions

from pop .

(4.1.6) Repeat Steps (4.1.2)-(4.1.5) until pop is

empty.
(4.2) Crowding distance: the crowding distance value for

each chromosome is calculated as follows.

(4.2.1) Initialize the distance of all Z individuals

to be zeros: 0id  for 1, 2,...,i Z .

(4.2.2) For the objective function
xf (

xf is

makespan or penalty cost), sort the set in
ascending order.

(4.2.3) Let
1d and

Zd be infinite distance:

(4.2.4) For 2,3,..., 1j Z  , let

1 1  
   

 

() ()

max min

j j

k k
j j

k k

f f
d d

f f
.

(4.3) Crowded-comparison-operator: Once the

chromosomes are assigned rank by the fast non-
domination and assigned crowding distance, the

crowded-comparison-operator (
n
) is employed

in the selection process at various stages of the
algorithm. Assume that every chromosome i

has non-domination rank (
ranki) and crowding

distance (
id), the partial order

n
 is defined by

ni j if (
rank ranki j) or ((

rank ranki j) and

i jd d) ; then the chromosome i is selected

using a binary tournament selection operator.

Step 5 (Generate new population):
(5.1) Crossover: Generate an offspring population

crossoverpop by the following steps.

(5.1.1) Select a pair of parent solutions from the
population using binary tournament
selection operator based on non-
domination rank and crowding distance.

(5.1.2) Implement a two-point cut crossover
operator, as shown in Fig. 4(a), to the
selected pair of parents to generate two
new child solutions.

(5.1.3) Evaluate objective values for the two new
child solutions according to Eqs. (1) and
(2).

(5.1.4) Repeat Steps (5.1.1)-(5.1.3) until
crossoverN

child solutions are generated through the

crossover operator among
crossoverN

selected parent solutions.
(5.2) Mutation: Generate an offspring population

mutationpop by the following steps.

(5.2.1) Select a solution from the population
using binary tournament selection with
crowded-comparison operator.

(5.2.2) Implement mutation operator, as shown
in Fig. 4(b), to the selected solution to
create a new solution.

(5.2.3) Evaluate objective values for the new
child solution according to Eqs. (1) and
(2).

(5.2.4) Repeat Steps (5.2.1)-(5.2.3) until
mutationN

parent solutions are selected to mutate

mutationN child solutions.

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 145

Step 6 (Update current population): The current population
pop is updated for a further run of the algorithm by the

following steps.
(6.1) Recombination: The current population pop is

merged with its offspring populations
crossoverpop

and
mutationpop :  , ,crossover mutationpop pop pop pop .

(6.2) Non-dominated sort: Each individual in the
recombination population pop is assigned a

rank based on non-domination criteria.
(6.3) Crowding distance: Calculate the crowding distance

value for each individual in the recombination
population pop .

(6.4) Selection: Once the recombination population
pop is sorted, based on descending crowding

distance and ascending non-domination rank,
individuals of the new generation need to be
selected from the current population. The new
generation is filled by each subsequent front until
the population size exceeds the current
population size and deletes the extra individuals.

If the population exceeds N by adding all the
individuals with rank r , then individuals with
rank r are selected based on their crowding
distance in descending order until the population

size is  : 1 :pop popN pop pop N .

Step 7 (Termination test): If the algorithm reaches maximum
generations, terminate the algorithm and return the Pareto
optimal solutions in the current population; Otherwise,
return to Step 3 to start the loop for the next iteration.

Step 8 (Report): Similar to the last step of MOVNS in
solving PPSP, pop solutions of final iteration are reported

as optimum schedules for precast production.

4. Computational Experiments
This paper analyzed the efficiency of the two

proposed metaheuristics: multi-objective variable
neighborhood search (MOVNS) algorithm and non-
dominated sorting genetic algorithm II (NSGA-II) for
solving the PPSP. The performance of these two
algorithms has been tested by several problem instances
with results compared against the multi-objective precast
production scheduling model (MOPPSM) algorithm [4],

and some recent algorithms successfully solved the FSSP.
A statistical analysis was also carried out to demonstrate
and validate the results.

4.1. Problem Instance Sets

To verify the capability of the proposed algorithms,
two types of problem instance sets were used. In the first
problem instance set, a case study of a real industrial
scheduling problem in a precast production company was
considered. In the second set, precast production data
were collected from the literature and used to develop ten
generated problem instances with different numbers of
production jobs.

4.1.1. Generated Problem Instances

To test the performance of the proposed algorithms,
experiments were conducted on generated problem
instances. To develop the generated problem instances,
data were taken from three data sets in the literature. The
data are illustrated in Table 2 as 26 types of precast
components (PCs). The first 6 types of PC (out of 26 types)
were taken from [8], the next 10 types of PC (PC type nos.
7-16) were taken from [11] and the remaining 10 types of
PC (PC type nos. 17-26) were taken from [14]. Based on
the collected data set, ten problem instances with different
numbers of jobs (up to 100 jobs) were developed, as
shown in Table 3. In each problem instance, the integer
number was arbitrarily generated and represented as the
number of jobs to be produced for each type of PC in the
precast production process. For example, PPSP03 with
size of 30 jobs (i.e., 30 customer orders) was generated
arbitrarily to each type of PC from PC types nos. 1-26 with
numbers of 0, 0, 0, 0, 0, 0, 4, 2, 2, 5, 3, 3, 2, 2, 5, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0 and 0, respectively. This sequence of
numbers indicates that all the operations of precast
concrete production were performed only for the PC
types nos. 7-16 with the number of jobs (or the number
of times to be produced): 4, 2, 2, 5, 3, 3, 2, 2, 5, 2. Each
job in the PC type was assigned a serial number of the PC
as to be PC no. Thus, the PC type no. 7 was produced four
times in the production plan and each was assigned a serial
number (i.e., PC nos. 1-4). For the PC types nos. 8 and 9,
each was produced twice in the production plan and each
was assigned a serial number: PC nos. 5-6 for PC type no.
8 and PC nos. 7-8 for PC type no. 9. The remaining 7 PC
types were assigned a serial number (PC nos. 9-30)
following the manner as described above.

Fig. 4. Genetic operators’ schemas.

2 4 5 6 7 8 1

2 3 1

Parent A

Parent B

2 5 6 4 7 8 13

3

6 85 4 7

Child

(a) two-point cut crossover

Before mutation

After mutation

6 7 8

7 2 3 4 5 6 81

3 4 521

(b) shift mutation

DOI:10.4186/ej.2020.24.6.139

146 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

4.1.2. Case Study
In this paper, data were collected from a leading

precast concrete production company in Trang Province,
Thailand. The company produces a variety of precast
concrete components. From among them, two precast
concrete products as concrete plank slabs and concrete
piles were considered. The case study contained a variety
of customer orders on the two precast products. There
were a total of 24 customer orders, and each customer
order was considered as a different job (i.e, different PC
no.). The jobs were processed in six operations: mold
assembly, reinforcement setting, concrete pouring,
concrete curing, demolding, and product finishing.
Processing times for the different jobs at different
operations are given in Table 4. Production planning
scheduling at the company was performed manually by the
production supervisor.

4.2. Performance Measures

Various performance metrics have been used for
numerical comparisons of the non-domination fronts on
the different multi-objective algorithms. In this paper, the
following two metrics were chosen.

4.2.1. Distance Metric

The distance metric is utilized to measure the

performance of a non-domination solution set
kS ,

1, 2,...,k A , relative to the reference set *S (the best

known Pareto front) and A is the total number of tested
algorithms. In this paper, the distance metrics were
calculated as follows.

Minimum distance (
minD):

  *min min min ,xy ky S
D d x S


  (9)

Average distance (1RD):

 
*

*

1
1 min ,R xy k

y S

D d x S
S 

  (10)

Maximum distance (
maxD):

  *max max min ,xy ky S
D d x S


  (11)

where xyd represents the Euclidean distance between a

solution x and a reference solution y , computed by

          
2 2* * * *

1 1 2 2xyd f y f x f y f x    (12)

where  *

if is the thi objective that is normalized

according to the reference set *S . The normalization is
accomplished by the following equation.

 
  min

*

max min
100 i i

i

i i

f x f
f x

f f

 
  

 
 (13)

where max

if and min

if are the maximum and minimum

values of the thi objective in the reference set *S ,

respectively. The reference set *S consists of the non-
dominated solutions of all the algorithms considered, i.e.,

1

A

kk
S


 . Details of the distance metric on 1RD and

maxD can be found in [39-41], while
minD measures the

performance in an opposite manner to
maxD .

More specifically, by using the above distance metrics,
both the convergence and diversity of a Pareto front set
can be considered. An algorithm having smaller values is
better. The distance metric is widely applied to measure
multi-objective scheduling problems [23-24, 31, 41-44].

Unlike the generation distance (GD) metric in [41, 45-46],

the measure of 1RD in Eq. (10) is not the average distance

from each solution in the solution set
kS to its nearest

reference solution set *S . However, using the reference

set *S , the metric 1RD can evaluate the distribution of

kS as well as the proximity of
kS in the metric GD .

4.2.2. Spread Metric

The spread (SP) metric is employed to estimate the

extent of the final non-dominated solution set
kS ,

1, 2,...,k A , obtained by each algorithm. The spread

metric  kSP S can be calculated as follows [4, 45-46]:

     
2

* *

1 11
max min

k kS S
N

k i j i ji jj
SP S f x f x

 

 
  

 
 (14)

where j kx S , for 1,2,..., kj S . The metric  kSP S

in Eq. (14) is calculated as the length of the diagonal line
of the minimum N-dimension hyper-rectangle in the
solution space. Details of the spread metric can be found
in [47-48].

4.3. Parameter Settings and Experimental Setup

This section demonstrated an experimental study on
the performance of the proposed approaches.
Experiments were conducted on the set of problem
instances described in Section 4.1. To compare the
performance of MOVNS and NSGA-II, eight recent
metaheuristic algorithms were assessed as follows.

1. Multi-objective precast production scheduling

model (MOPPSM) algorithm [4].
2. The standard bat algorithm for multiple

objectives (MOBA) [49].
3. The bat algorithm in [50], renamed BA-HFS.
4. The standard firefly algorithm for multiple

objectives (MOFA) [51].

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 147

Table 2. Production data of precast components (PCs) taken from the literature.

PC
type
no.

Processing times (h) Due
date
(h)

Penalties

Mold
assembly

Reinforcement
setting

Concrete
casting

Concrete
curing

Mold
stripping

Product
finishing

Earliness

( i
)

Tardiness

( i
)

1 1 0.8 1.2 12 1.5 0.5 28 2 10

2 1.7 2 2 12 1.5 2.5 28 2 10

3 0.4 0.5 0.6 12 0.5 0 28 1 10

4 0.3 0.4 0.5 12 0.4 1 28 1 10

5 1.5 1.8 1.2 12 1.5 1.5 52 2 10

6 1.5 1.6 1.5 12 1.8 0.8 32 2 10

7 2 1.6 2.4 12 2.5 1 112 2 10

8 3.4 4 4 12 2.4 5 112 2 10

9 0.8 1 1.2 12 0.8 0 112 1 10

10 0.6 0.8 1 12 0.6 2 112 1 10

11 3 3.6 2.4 12 2.4 3 208 2 10

12 3 3.2 3 12 3 1.6 128 2 10

13 1.3 0.9 2.4 12 1.9 1.8 144 2 10

14 1.7 1.4 1.1 12 0.9 0.7 144 2 20

15 2.2 1.8 1.2 12 2.3 0.7 144 1 20

16 1.6 3.2 2.3 12 2.1 2.7 240 1 20

17 1.5 2 0.5 8 1 0.5 164 2 10

18 1 2 0.4 8 1 0.5 140 2 10

19 1 1.5 0.5 8 0.5 0.5 164 2 10

20 0.5 1 0.3 8 0.3 0.5 160 2 10

21 1 0.8 1 8 1.5 0.5 160 2 10

22 0.5 2 0.4 8 0.5 0.5 164 2 10

23 1.5 2 0.5 8 1 0.4 140 2 10

24 0.5 2 0.3 8 0.6 0.3 164 2 10

25 1.5 1.8 1.2 8 1.5 1.5 140 2 10

26 0.4 0.5 0.6 8 0.5 0.5 164 2 10

DOI:10.4186/ej.2020.24.6.pp

148 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

Table 3. Problem instances and numbers of customer orders for each PC type.

Problem instance Size of instance
PC type no.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

PPSP01 10 jobs 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

PPSP02 20 jobs 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1

PPSP03 30 jobs 0 0 0 0 0 0 4 2 2 5 3 3 2 2 5 2 0 0 0 0 0 0 0 0 0 0

PPSP04 40 jobs 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 2 1 2 2 2 2 1

PPSP05 50 jobs 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2

PPSP06 60 jobs 2 3 4 1 5 1 4 1 2 5 2 1 2 2 2 1 3 4 1 2 1 2 1 4 2 2

PPSP07 70 jobs 1 3 5 2 3 4 1 2 3 1 2 3 1 3 6 2 5 2 3 1 4 1 4 2 5 1

PPSP08 80 jobs 1 2 1 5 4 2 6 2 3 2 4 3 5 4 4 2 4 3 1 5 3 4 1 4 3 2

PPSP09 90 jobs 6 3 4 5 7 5 6 4 5 10 7 5 4 5 12 2 0 0 0 0 0 0 0 0 0 0

PPSP10 100 jobs 1 5 2 5 7 5 9 4 5 3 7 6 5 5 2 4 2 5 3 2 1 5 1 3 2 1

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 149

5. Two variants of the discrete firefly algorithm,
renamed DFA-1 [52] and DFA-2 [53].

6. The standard cuckoo search algorithm for
multiple objectives (MOCS) [54].

7. Hybrid CS (HCS) [55].

All algorithms were implemented in MATLAB

software and executed on a personal computer with an
Intel Core i5 3.3GHz Processor and 4GB of memory.
Table 5 lists the main parameter settings involved in each
algorithm. To test the impact of the parameters on the
performance, three parameter values of MOVNS and 27
different parameter combinations for NSGA-II and
MOPPSM were obtained. Algorithms with each
combination were run for all problem instances, based on

extensive experiments. For the MOPPSM, values of
eliteN

and
tk were set to 4 and 2, respectively for all instances

according to [4]. The best results of the algorithms
measured using the above metrics were achieved over all

problem instances with parameter settings:  150popN

for the MOVNS, (popN , pc , pm)  (150, 0.9, 0.3) for

the NSGA-II, and (popN , pc , pm) = (100, 0.7, 0.5) for

the MOPPSM.
Parameter settings for MOBA, BA-HFS, MOFA,

DFA-2, MOCS, and HCS employed the default values
taken from the related literature, while parameter settings
for DFA-1 were obtained by testing different types of
parameters based on the suggested ranges in [52] over the
PPSP instances. To fairly compare all the algorithms, this
paper used the maximum CPU times (in seconds, s) as the
termination criterion of the algorithm. Maximum CPU
time is a widely used criterion for performance
comparison of different metaheuristics [31, 56-58]. The
maximum CPU times for solving each problem instance
are shown in Table 6.

4.4. Computational Results and Comparison

Based on the parameter settings and the termination
criterion described in subsection 4.3, each problem
instance was conducted for 20 trials (runs) for each
algorithm. In this paper, the total number of tested
algorithms (A) was equal to 10. Computational results of
the ten algorithms are illustrated in Tables 7-10, in which

*S is the reference set that consists of all non-dominated

Table 4. Precast production data of a real industrial scheduling problem: Case Study.

PC
no.

Name

Processing times (h) Due
date
(h)

Penalties

Mold
assembly

Reinforcement
setting

Concrete
casting

Concrete
curing

Mold
stripping

Product
finishing

Earliness

( i
)

Tardines

s ( i
)

1 Plank Slabs 0.5 0.5 1 22 2 0.8 96 0.4 4.2

2 Plank Slabs 0.5 0.5 1 22 2 0.8 96 0.4 4.2

3 Plank Slabs 0.5 0.5 1 22 2 0.8 192 0.4 4.2

4 Plank Slabs 0.5 0.5 1 22 2 0.8 192 0.4 4.2

5 Plank Slabs 0.5 0.5 1 22 2 0.8 120 0.4 4.2

6 Piles 0.5 1.25 1 27 2 0.5 48 1.7 4.2

7 Plank Slabs 0.5 0.5 1 22 2 0.8 120 0.4 4.2

8 Plank Slabs 0.5 0.5 1 22 2 0.8 144 0.4 4.2

9 Piles 0.5 1.25 1 27 2 0.5 240 2.1 4.2

10 Piles 0.5 1.25 1 27 2 0.5 168 1.1 4.2

11 Piles 0.5 1.25 1 27 2 0.5 336 1.1 4.2

12 Piles 0.5 1.25 1 27 2 0.5 216 1.1 4.2

13 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2

14 Piles 0.5 1.25 1 27 2 0.5 144 2.1 4.2

15 Piles 0.5 1.25 1 27 2 0.5 192 2.1 4.2

16 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2

17 Piles 0.5 1.25 1 27 2 0.5 216 2.1 4.2

18 Piles 0.5 3 1.5 27 2 0.5 288 3.8 10.5

19 Piles 0.5 3 1.5 27 2 0.5 336 3.8 10.5

20 Piles 0.5 3 1.5 27 2 0.5 336 3.8 10.5

21 Plank Slabs 0.5 0.5 1 22 2 0.8 48 0.4 4.2

22 Piles 0.5 3 1.5 27 2 0.5 360 5.3 10.5

23 Piles 0.5 3 1.5 27 2 0.5 360 8.7 10.5

24 Plank Slabs 0.5 0.5 1 22 2 0.8 168 0.4 4.2

DOI:10.4186/ej.2020.24.6.pp

150 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

Table 5. Parameter settings of all algorithms.

Parameter setting MOVNS NSGA-II MOPPSM [4] MOBA [49] BA-HFS [50] MOFA [51] DFA-1 [52] DFA-2 [53] MOCS [54] HCS [55]

Population size (
popN) (50, 100, 150) (50, 100, 150) (50, 100, 150) 50 100 50 50 10 50 20

Crossover rate (pc) - (05, 0.7, 0.9) (05, 0.7, 0.9) - - - - - - -

Mutation rate (pm) - (0.1, 0.3, 0.5) (0.1, 0.3, 0.5) - - - - - - -

Elite number (
eliteN) - - 4 - - - - - - -

Termination value of

local search (
tk)

- - 2 - - - - - - -

Loudness (
iA) - - - 0.9 0.9 - - - - -

Pulse rate (
ir) - - - 0.9 0.9 - - - - -

Randomization
parameter ()

- - - - - 0.25 1 0.25 - -

Light absorption () - - - - - 1 0.5 1 - -

Attractiveness of

firefly (
0)

- - - - - 1 1 0.2 - -

Discovery probability

(
ap)

- - - - - - - - 0.5 0.25

Lévy exponent () - - - - - - - - 1.5 1.5

Table 6. Maximum CPU times for terminating the tested algorithms in each instance.

Problem instance PPSP01 PPSP02 PPSP03 PPSP04 PPSP05 PPSP06 PPSP07 PPSP08 PPSP09 PPSP10 Case Study

Size of instance (jobs) 10 20 30 40 50 60 70 80 90 100 24

CPU time (s) 15 70 120 300 600 600 600 600 600 600 70

DOI:10.4186/ej.2020.24.6.139

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 151

solutions of
10

1 kk
S


.

1S ,
2S ,

3S ,
4S ,

5S ,
6S ,

7S ,
8S ,

9S ,

10S were represented the non-dominated set of MOVNS,

NSGA-II, MOPPSM, MOBA, BA-HFS, MOFA, DFA-1,
DFA-2, MOCS and HCS, respectively. Then, values of the

indicators SP , 1RD ,
minD and

maxD were calculated as

the corresponding metric values of
kS . Graphical results

of all metrics are illustrated in Fig. 5.
For performance comparison, the paired-sample t-

test was conducted to compare MOVNS with the other
nine algorithms based on four of the aforementioned
indicators. Table 11 shows the p­value results of the above
tests for the null hypothesis. There was no difference in
the mean value of each indicator for a paired algorithm.
The term “Paired-variable (A, B)” means that a paired t-
test was conducted on the paired algorithm of (A, B) to
judge whether algorithm B gave a better sample mean than
algorithm A. Using a significance level of 0.05, the result
was considered statistically significant if the corresponding
p­value was less than 0.05, indicating that A performed
better than B in the statistical sense.

4.4.1 Comparisons of the Proposed Algorithms

Results in Tables 7-11 indicated that the MOVNS
was superior to NSGA-II. For the metric SP , the
algorithm accepts only dominating solutions (or solutions
with larger improvement on objectives) with a small
search area in replacing if the value of SP becomes smaller.
Conversely, a larger value of the spread can be expected if
solutions are accepted from a larger area. As shown in
Table 7, results showed that MOVNS produced more or
a similar extent of non-dominated solutions than NSGA-
II for almost all problem instances, except for the PPSP04.

As shown in Table 8, 1RD of MOVNS was less than

1RD of NSGA-II for 7 problem instances, while 1RD of

both algorithms was equal to 0 for 2 problem instances.

The zero value of 1RD indicated that all members of *S

were generated by MOVNS and NSGA-II. Because most

of the solutions in *S were provided by MOVNS, the

1RD value of NSGA-II was greater than that of MOVNS.

As shown in Tables 9 and 10, MOVNS gave better

results on
minD than NSGA-II for all problem instances,

while
maxD of NSGA-II was greater than

maxD of

MOVNS for almost all problem instances, except for
PPSP06. Moreover, results in Table 11 also showed that
the MOVNS performance was statistically superior to
NSGA-II. Thus, it can be concluded that the performance
of MOVNS was better than the performance of NSGA-
II, and MOVNS was reasonable and effective to solve the
PPSP.

4.4.2 Comparisons among Eight Algorithms

From Tables 7-11, it can be concluded that the
MOVNS outperformed MOPPSM, MOBA, BA-HFS,
MOFA, DFA-1, DFA-2, MOCS, and HCS. As shown in

Table 10, MOVNS provided all members of the set *S on

3 problem instances, MOPPSM obtained the whole set *S
of two problem instances and MOCS obtained the whole

set *S for only one problem instance, while MOBA, BA-
HFS, MOFA, DFA-1, and DFA-2 did not generate any

members of *S on 11 problem instances. MOVNS

obtained more members of *S than MOPPSM, MOBA,
BA-HFS, MOFA, DFA-1, DFA-2, MOCS, and HCS on 4,
11, 11, 8, 9, 11, 9 and 9 problem instances, respectively.
In Tables 8-10, the average values of metrics solutions of
MOBA, BA-HFS, DFA-2, MOCS, and HCS were located

far away from the members of the set *S . MOPPSM
performed better than NSGA-II, MOFA and DFA-1 on

1RD and
maxD ; however,

minD of MOPPSM was greater

than that of NSGA-II. Statistical analysis results in Table
11 showed that MOVNS gave significantly better

performance than MOPPSM on two metrics: SP and

minD . Moreover, MOVNS was superior to MOFA, DFA-

1, MOCS and HCS on four metrics, while it was inferior

to MOBA, BA-HFS, and DFA-2 on only the metric SP .
This result further justified the advantages of MOVNS
according to the analysis of performance comparisons.

The performance comparison of all algorithms
showed that MOVNS outperformed NSGA-II,
MOPPSM, MOBA, BA-HFS, MOFA, DFA-1, DFA-2,
MOCS, and HCS. The good performances of MOVNS
mainly resulted from two reasons. The first related to its
simplicity of the basic scheme and the non-dominated set
updating process. The proposed MOVNS produced more
non-dominated solutions. The second was that the
proposed MOVNS implemented more than one
neighborhood structure randomly to explore and exploit
the solution space, while other comparing algorithms
employed only one neighborhood structure to improve
the convergence speed for the Pareto solution. Therefore,
the advantages of MOVNS result from its simplicity in
structure, strong local search ability and variable
neighborhood mechanism. Thus, the MOVNS was shown
to be a very competitive method for the considered PPSP.

5. Conclusions
Precast production scheduling plays an important role

for decision-making in the precast fabrication industry. In
this paper, the multi-objective precast production
scheduling problem (PPSP) model with two conflicting
objectives of optimizing makespan and total penalty costs
of earliness and tardiness was investigated. A MOVNS
was presented and tested on ten generated problem
instances and a real case study of an industrial scheduling
problem in a precast concrete company. The MOVNS
metaheuristic was compared with the other algorithms,
namely NSGA-II, MOPPSM, MOBA, BA-HFS, MOFA,
DFA-1, DFA-2, MOCS, and HCS. Computational results
showed that the MOVNS provided better solutions than
the other algorithms in almost all problem instances. Thus,
the MOVNS was determined as a promising approach to
solve the PPSP. The MOVNS metaheuristic can provide

DOI:10.4186/ej.2020.24.6.pp

152 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

Table 7. Results of ten algorithms on SP .

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS

PPSP01 138.37 138.37 138.37 104.72 136.05 138.76 138.91 140.69 138.37 138.37

PPSP02 100.98 67.64 72.44 68.37 119.75 102.48 57.18 60.80 70.63 73.73

PPSP03 285.16 97.50 97.80 104.13 546.81 120.58 69.47 532.29 98.05 96.47

PPSP04 154.08 155.29 154.65 93.76 103.49 131.54 112.15 101.29 142.20 24.95

PPSP05 94.97 44.33 18.84 101.99 103.82 131.54 105.98 139.12 122.83 95.49

PPSP06 161.41 92.15 100.15 550.45 43.56 131.54 154.19 89.07 99.43 91.36

PPSP07 141.42 100.69 100.11 131.29 79.93 101.57 150.65 109.63 98.64 57.71

PPSP08 161.41 135.09 130.33 131.29 91.07 54.48 101.84 85.39 14.58 82.01

PPSP09 304.14 93.86 125.48 211.91 455.34 168.90 102.97 139.57 96.85 93.64

PPSP10 216.71 75.10 143.20 578.98 92.39 96.77 98.77 49.07 40.27 102.35

Case Study 104.93 104.93 104.93 96.93 111.61 41.99 41.99 118.27 41.99 104.93

Average 169.42 100.45 107.85 197.62 171.26 110.92 103.10 142.29 87.62 87.36

Table 8. Results of ten algorithms on 1RD .

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS

PPSP01 0.00 0.00 0.00 7.94 1.91 0.10 0.06 1.15 0.00 0.00

PPSP02 0.00 1.22 0.53 16.22 15.63 0.55 0.64 8.34 1.41 0.12

PPSP03 3.78 7.68 0.33 12.62 31.74 9.37 13.21 23.89 23.17 13.10

PPSP04 1.87 13.15 4.77 15.35 8.04 1.25 9.36 5.22 7.85 24.54

PPSP05 0.07 37.83 30.98 15.84 11.55 6.36 8.86 8.84 3.68 16.83

PPSP06 9.01 2.94 1.55 48.69 10.45 6.47 7.73 2.53 5.47 15.90

PPSP07 0.48 11.37 1.15 13.75 18.27 10.22 6.79 18.76 10.02 19.15

PPSP08 9.84 9.49 5.87 12.20 12.80 9.63 8.95 10.85 24.81 22.40

PPSP09 4.27 12.43 1.85 22.07 19.80 9.83 7.75 25.28 18.30 11.92

PPSP10 2.13 10.33 1.95 22.30 13.12 15.18 9.90 39.69 31.64 14.70

Case Study 0.00 0.00 0.00 16.99 8.27 0.76 0.76 5.11 0.76 0.00

Average 2.86 9.68 4.45 18.54 13.78 6.34 6.73 13.61 11.56 12.61

DOI:10.4186/ej.2020.24.6.pp

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 153

Table 9. Results of ten algorithms on
minD .

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS

PPSP01 0.00 0.00 0.00 1.09 0.52 0.00 0.00 0.52 0.00 0.00

PPSP02 0.00 0.03 0.02 1.61 9.85 0.33 0.52 3.90 0.11 0.07

PPSP03 0.00 0.06 0.01 10.79 9.98 0.51 1.37 3.72 0.02 0.48

PPSP04 0.00 0.03 0.00 2.51 1.67 0.10 0.09 0.23 0.00 0.25

PPSP05 0.07 0.30 0.10 0.43 5.73 0.31 0.09 2.88 0.45 0.11

PPSP06 0.00 0.86 0.04 11.56 1.41 0.25 0.01 1.42 0.07 0.19

PPSP07 0.00 0.00 0.00 1.57 5.23 0.00 0.01 0.00 0.30 0.43

PPSP08 0.00 0.05 0.81 2.41 10.22 0.39 1.32 0.48 2.05 1.02

PPSP09 0.00 1.05 1.60 1.49 1.41 1.76 0.74 0.04 1.60 0.75

PPSP10 0.00 0.74 1.03 6.87 0.98 1.19 0.97 2.89 1.26 2.19

Case Study 0.00 0.00 0.00 9.37 8.27 0.76 0.76 0.99 0.76 0.00

Average 0.01 0.28 0.33 4.52 5.02 0.51 0.53 1.55 0.60 0.50

Table 10. Results of ten algorithms on
maxD .

Problem instance MOVNS NSGA-II MOPPSM MOBA BA-HFS MOFA DFA-1 DFA-2 MOCS HCS

PPSP01 0.00 0.00 0.00 53.33 2.86 0.35 0.77 2.91 0.00 0.00

PPSP02 0.00 27.79 29.63 70.37 26.60 1.91 1.93 25.37 29.63 0.16

PPSP03 26.20 90.13 27.29 13.14 73.51 36.34 86.70 87.65 88.91 92.05

PPSP04 8.30 31.93 16.43 37.30 12.17 7.79 52.06 26.76 24.41 94.71

PPSP05 0.07 75.78 82.42 58.58 50.85 44.92 52.98 25.60 20.75 89.63

PPSP06 12.67 8.68 76.53 96.54 80.28 21.99 22.04 4.85 9.46 91.93

PPSP07 18.44 88.19 10.28 22.98 31.82 72.17 22.04 55.26 94.40 96.12

PPSP08 14.69 29.34 22.41 39.62 16.64 64.25 52.98 81.37 85.76 96.65

PPSP09 31.49 87.03 17.15 57.83 62.80 33.80 52.98 96.02 68.39 88.72

PPSP10 2.53 65.43 8.69 55.29 56.32 48.13 52.98 80.34 88.18 65.12

Case Study 0.00 0.00 0.00 39.23 8.27 0.76 0.76 25.73 0.76 0.00

Average 10.40 45.85 26.44 49.47 38.37 30.22 36.20 46.53 46.42 65.01

DOI:10.4186/ej.2020.24.6.pp

154 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

(a) Values of SP

(b) Values of 1RD

(c) Values of
minD

(d) Values of
maxD

Fig. 5. Performance comparison of the ten algorithms using the SP , 1RD ,
minD and

maxD metrics.

0

100

200

300

400

500

600

700

PPSP01 PPSP02 PPSP03 PPSP04 PPSP05 PPSP06 PPSP07 PPSP08 PPSP09 PPSP10 Case Study

S
P

MOVNS NSGA-II MOPPSM MOBA BA-HFS

MOFA DFA-1 DFA-2 MOCS HCS

DOI:10.4186/ej.2020.24.6.pp

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 155

production schedules to assist managers in decision-
making on precast concrete production.

In the future, extensions of MOVNS will be used to
solve the PPSP by considering more complex
manufacturing disturbance situations such as rush order
arrival, due date change, uncertain processing time, and
buffer size. Some novel methods to enhance performance
including global search and intensification strategies on
neighborhood search will also be considered.

Acknowledgement
This work was supported by the Prince of Songkla

University, the Higher Education Research Promotion
and the Thailand Education Hub for the Southern Region
of ASEAN Countries (TEH-AC) Project Office of the
Higher Education Commission.

References
[1] A. Konczak and J. Paslawski, “Decision support in

production planning of precast concrete slabs based
on simulation and learning from examples,” Procedia
Engineering, vol. 122, pp. 81–87, 2015.

[2] M. K. F. Othman, W. M. N. W. Muhammad, N. A.
Hadi, and M. A. Azman, “The significance of
coordination for industrialised building system (IBS)
precast concrete in construction industry,” in
Proceedings of the International Symposium on Civil and
Environmental Engineering, Wuhan, China, 2017, pp. 1–
8.

[3] C. H. Ko, “Impact of the buffer size on precast
fabrication,” in Proceedings of the 24th Annual Conference
of the International Group for Lean Construction, Boston,
USA, 2016, pp. 83–92.

[4] C. H. Ko and S. Wang, “Precast production
scheduling using multi-objective genetic algorithms,”
Expert Systems with Applications, vol. 38, no. 7, pp.
8293–8302, 2011.

[5] B. D. A. Prata, A. R. Pitombeira-Neto, and C. J. D. M.
Sales, “An integer linear programming model for the
multi-period production planning of precast concrete
beams,” Journal of Construction Engineering and
Management, vol. 141, no. 10, pp. 1–4, 2015.

[6] Z. Wang, H. Hu, and J. Gong, “Framework for
modelling operational uncertainty to optimize offsite

production scheduling of precast components,”
Automation in Construction, vol. 86, pp. 69–80, 2018.

[7] W. T. Chan and H. Hu, “An application of genetic
algorithms to precast production scheduling,”
Computers and Structures, vol. 79, no. 17, pp. 1605–1616,
2001.

[8] W. T. Chan and H. Hu, “Production scheduling for
precast plants using a flow shop sequencing model,”
Journal of Computing in Civil Engineering, vol. 16, no. 3,
pp. 165–174, 2002.

[9] S. S. Leu and S. T. Hwang, “GA-based resource-
constrained flow-shop scheduling model for mixed
precast production,” Automation in Construction, vol. 11,
no. 4, pp. 439–452, 2002.

[10] C. H. Ko and S. Wang, “GA-based decision support
systems for precast production planning,” Automation
in Construction, vol. 19, pp. 907–916, 2010.

[11] V. Benjaoran, N. N. Dawood, and B. Hobbs, “Flow
shop scheduling model for bespoke precast concrete
production planning,” Construction Management and
Economics, vol. 23, no. 1, pp. 93–105, 2005.

[12] W. Tharmmaphornphilas and N. Sareinpithak,
“Formula selection and scheduling for precast
concrete production,” International Journal of Production
Research, vol. 51, no. 17, pp. 5195–5209, 2013.

[13] Z. Yang, Z. Ma, and S. Wu, “Optimized flow shop
scheduling of multiple production lines for precast
production,” Automation in Construction, vol. 72, no. 3,
pp. 321–329, 2016.

[14] Z. Wang and H. Hu, “Improved precast production–
scheduling model considering the whole supply chain,”
Journal of Computing in Civil Engineering, vol. 31, no. 4,
pp. 1–12, 2017.

[15] D. S. Palmer, “Sequencing jobs through a multi-stage
process in the minimum total time: A quick method
of Obtaining a Near Optimum,” Journal of the
Operational Research Society, vol. 16, no. 1, pp. 101–107,
1965.

[16] J. N. Gupta, “A functional heuristic algorithm for the
flow shop scheduling problem,” Journal of the
Operational Research Society, vol. 22, no. 1, pp. 39–47,
1971.

[17] H. G. Campbell, R. A. Dudek, and M. L. Smith, “A
heuristic algorithm for the n job, m machine

Table 11. Paired-sample t-test for ten algorithms.

Paired-samples t-test p-value (1RD) p-value (
minD) p-value (

maxD) p-value (SP)

Paired-variable (MOVNS, NSGA-II) 0.040 0.022 0.002 0.007

Paired-variable (MOVNS, MOPPSM) 0.307 0.043 0.056 0.006

Paired-variable (MOVNS, MOBA) 0.000 0.003 0.001 0.693

Paired-variable (MOVNS, BA-HFS) 0.001 0.001 0.001 0.521

Paired-variable (MOVNS, MOFA) 0.020 0.006 0.009 0.007

Paired-variable (MOVNS, DFA-1) 0.006 0.004 0.002 0.01

Paired-variable (MOVNS, DFA-2) 0.008 0.003 0.001 0.221

Paired-variable (MOVNS, MOCS) 0.008 0.011 0.002 0.004

Paired-variable (MOVNS, HCS) 0.001 0.016 0.000 0.002

DOI:10.4186/ej.2020.24.6.pp

156 ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/)

sequencing problem,” Management Science, vol. 16, no.
10, pp. B630-B637, 1970.

[18] D. G. Dannenbring, “An evaluation of flow shop
sequencing heuristics,” Management Science, vol. 23, no.
11, pp. 1174–1182, 1977.

[19] W. T. Chan and H. Hu, “Constraint programming
approach to precast production scheduling,” Journal of
Construction Engineering and Management, vol. 128, no. 6,
pp. 513–521, 2002.

[20] N. Mladenović and P. Hansen, “Variable
neighborhood search,” Computers and Operations
Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[21] P. Hansen and N. Mladenović, “Variable
neighbourhood search: Principles and applications,”
European Journal of Operational Research, vol. 130, no. 3,
pp. 449–467, 2001.

[22] D. Lei and X. P. Guo, “Variable neighbourhood
search for minimizing total tardiness on flow shop
with batch processing machines,” International Journal
of Production Research, vol. 49, no. 2, pp. 519–529, 2011.

[23] D. Lei, “Variable neighbourhood search for two-
agent flow shop scheduling,” Computers and Industrial
Engineering, vol. 80, pp. 125–131, 2015.

[24] D. Lei and Y. Zheng, “Hybrid flow shop scheduling
with assembly operations and key objectives: A novel
neighbourhood search,” Applied Soft Computing, vol. 61,
pp. 122–128, 2017.

[25] H. Eskandari and A. Hosseinzadeh, “A variable
neighbourhood search for hybrid flow-shop
scheduling problem with rework and set-up times,”
Journal of the Operational Research Society, vol. 65, no. 8,
pp. 221–1231, 2014.

[26] J. Li, Q. Pan, and F. Wang, “A hybrid variable
neighborhood search for solving the hybrid flow shop
scheduling problem,” Applied Soft Computing, vol. 24,
pp. 63–77, 2014.

[27] M. A. Adibi, M. Zandieh, and M. Amiri, “Multi-
objective scheduling of dynamic job shop using
variable neighbourhood search,” Expert Systems with
Applications, vol. 37, no. 9, pp. 282–287, 2010.

[28] M. Amiri, M. Zandieh, M. Yazdani, and A. Bagheri,
“A variable neighbourhood search algorithm for the
flexible job-shop scheduling problem,” International
Journal of Production Research, vol. 48, no. 19, pp. 5671–
5689, 2010.

[29] M. Zandieh and M. A. Adibi, “Dynamic job shop
scheduling using variable neighbourhood search,”
International Journal of Production Research, vol. 48, no. 8,
pp. 2449–2458, 2010.

[30] D. Lei and X. P. Guo, “Variable neighbourhood
search for dual-resource constrained flexible job shop
scheduling,” International Journal of Production Research,
vol. 52, no. 9, pp. 2519–2529, 2014.

[31] J. E. C. Arroyo, R. Ottoni, and A. P. Oliveira, “Multi-
objective variable neighbourhood search algorithms
for a single machine scheduling problem with distinct
due windows,” Electronic Notes in Theoretical Computer
Science, vol. 281, pp. 5–19, 2011.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multi-objective genetic algorithm:
NSGA II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[33] Y. Y. Han, D. W. Gong, X. Y. Sun, and Q. K. Pan,
“An improved NSGA-II algorithm for multi-
objective lot-streaming flow shop scheduling
problem,” International Journal of Production Research, vol.
52, no. 8, pp. 2211–2231, 2014.

[34] J. L. Andrade-Pineda, D. Canca. P. L. Gonzalez-R,
and M. Calle, “Scheduling a dual-resource flexible job
shop with makespan and due date-related criteria,”
Annals of Operations Research, vol. 291, pp. 5–35, 2020.

[35] H. Ishibuchi and T. Murata, “Multi-objective genetic
local search algorithm and its applications to flow
shop scheduling,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 28, no. 3, pp. 392–403, 1998.

[36] A. Warszawski and E. Ishai, “Long range planning of
prefabrication industry in a national economy
(summary),” Building and Environment, vol. 17, no. 1, pp.
47–54, 1982.

[37] J. Behnamian and S. M. T. Fatemi Ghomi, “Multi-
objective fuzzy multiprocessor flowshop scheduling,”
Applied Soft Computing, vol. 21, pp. 139–148, 2014.

[38] M. J. Geiger, “Randomized variable neighbourhood
search for multi objective optimization,” in Proceedings
of the 4th EU/ME Workshop: Design and Evaluation of
Advanced Hybrid Meta-Heuristics, Nottingham, UK,
2004, pp. 34–42.

[39] E. L. Ulungu, J. Teghem, and Ch. Ost, “Efficiency of
interactive multi-objective simulated annealing
through a case study,” Journal of the Operational Research
Society, vol. 49, no. 10, pp. 1044–1050, 1998.

[40] P. Czyzak and A. Jaszkiewicz, “Pareto-simulated
annealin – a metaheuristic technique for multi-
objective combinatorial optimization,” Journal of
Multi-Criteria Decision Analysis, vol. 7, no. 1, pp. 34–
47, 1998.

[41] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance
between genetic local search in memetic algorithms
for multiobjective permutation flowshop scheduling,”
IEEE Transactions on Evolutionary Computation, vol. 7,
no. 2, pp. 204–223, 2003.

[42] V. E. Armentano and J. E. C. Arroyo, “An application
of a multi-objective tabu search algorithm to a
bicriteria flowshop problem,” Journal of Heuristics, vol.
10, no. 5, pp. 463–481, 2004.

[43] J. E. C. Arroyo and V. E. Armentano, “A partial
enumeration heuristic for multi-objective flow shop
scheduling problems,” Journal of the Operational Research
Society, vol. 55, no. 9, pp. 1000–1007, 2004.

[44] J. M. Framinan and R. Leisten, “A multi-objective
iterated greedy search for flow shop scheduling with
makespan and flowtime criteria,” OR Spectrum, vol. 30,
no. 4, pp. 787–804, 2008.

[45] K. Deb, Multi-Objective Optimization using Evolutionary
Algorithms. New York: John Wiley & Sons Ltd., 2010.

[46] P. Chutima and T. Kirdphoksap, “Solving many-
objective car sequencing problems on two-sided

DOI:10.4186/ej.2020.24.6.pp

ENGINEERING JOURNAL Volume 24 Issue 6, ISSN 0125-8281 (https://engj.org/) 157

assembly lines using an adaptive differential
evolutionary algorithm,” Engineering Journal, vol. 23, no.
4, pp. 121–156, 2019.

[47] E. Zitzler, “Evolutionary algorithm for multi-
objective optimization: Methods and applications,”
Ph.D., Technical Sciences, Swiss Federal Institute of
Technology (ETH), Switzerland, 1999.

[48] S. Kaige, T. Murata, and H. Ishibuchi, “Performance
evaluation of memetic EMO algorithms using
dominance relation-based replacement rules on MOO
test problem,” in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Washington,
USA, 2003, pp. 14–19.

[49] X. S. Yang, “Bat algorithm for multi-objective
optimization,” International Journal of Bio-Inspired
Computation, vol. 3, no.5, pp. 267–274, 2011.

[50] M. K. Marichelvam, T. Prabaharan, X. S. Yang, and
M. Geetha, “Solving hybrid flow shop scheduling
problems using bat algorithm,” International Journal of
Logistics Economics and Globalisation, vol. 5, no. 1, pp.
15–29, 2013.

[51] X. S. Yang, “Multiobjective firely algorithm for
continuous optimization,” Engineering with Computers,
vol. 29, no. 2, pp. 175–184, 2013.

[52] M. K. Marichelvam, T. Prabaharan, and X. S. Yang.
“A discrete firefly algorithm for the multi-objective
hybrid flowshop scheduling problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 2,
301–305, 2014.

[53] J. Schmid, L. Kieser, T. Hanne, and R. Dornberger,
“Optimizing different parameters of a discrete firefly
algorithm for solving the permutation flow shop
problem,” in Proceedings of the IEEE Symposium Series on
Computational Intelligence, Honolulu, USA, 2017, pp. 1–
6.

[54] X. S. Yang and S. Deb, “Multi-objective cuckoo
search for design optimization,” Computers and
Operations Research, vol. 40, no. 6, pp. 1616–1624, 2013.

[55] X. Li and M. Yin, “A hybrid cuckoo search via Lévy
flights for the permutation flow shop scheduling
problem,” International Journal of Production Research, vol.
51, no. 16, pp. 4732–4754, 2013.

[56] A. Duarte, J. J. Pantrigo, E. G. Pardo, and N.
Mladenovic, “Multi-objective variable neighbourhood
search: An application to combinatorial optimization
problems,” Journal of Global Optimization, vol. 63, no. 3,
pp. 515–536, 2015.

[57] S. Selvi and D. Manimegalai, “Multi-objective variable
neighbourhood search algorithm for scheduling
independent jobs on computational grid,” Egyptian
Informatics Journal, vol. 16, no. 2, pp. 199–212, 2015.

[58] G. Palubeckis, “A variable neighbourhood search and
simulated annealing hybrid for the profile
minimization problem,” Computers and Operations
Research, vol. 87, pp. 83–97, 2017.

 Wanatchapong Kongkaew was born in Trang province, Thailand in 1982. He received the B.Eng. degree in industrial

engineering from Kasetsart University, Chonburi, Thailand, in 2004, the M.Eng. degree in

industrial and systems engineering from Prince of Songkla University, Songkhla, Thailand, in 2007,

and the D.Eng. degree in industrial engineering from Kasetsart University, Bangkok, Thailand, in

2013.
From 2013 to 2017, he was a Lecturer with the Industrial Engineering Department, Prince of

Songkla University, Thailand. Since 2018, he has been an Assistant Professor with the Industrial

Engineering Department, Prince of Songkla University, Thailand. His research interests include

operations research and optimization, evolutionary computation and metaheuristics, production

planning and control, discrete-event simulation, and logistics and supply chain engineering.
Dr. Wanatchapong was recieved a regulated engineering profession license at professional engineer level from

Council of engineers of Thailand.

Lehuang Zong was born in Jiangxi provice, China in 1991. He received the B.Eng. degree in industrial engineering from

Jiangxi University of Science and Technology, Ganzhou, China, in 2014. He is a student in Master

of Engineering program in industrial and systems engineering at Prince of Songkla University,

Songkhla, Thailand.
His research interests include optimization, evolutionary computation and metaheuristics,

production planning and scheduling, and data analytics.

