615 research outputs found

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    Refined Genetic Algorithms for Polypeptide Structure Prediction

    Get PDF
    Accurate and reliable prediction of macromolecular structures has eluded researchers for nearly 40 years. Prediction via energy minimization assumes the native conformation has the globally minimal energy potential. An exhaustive search is impossible since for molecules of normal size, the size of the search space exceeds the size of the universe. Domain knowledge sources, such as the Brookhaven PDB can be mined for constraints to limit the search space. Genetic algorithms (GAs) are stochastic, population based, search algorithms of polynomial (P) time complexity that can produce semi-optimal solutions for problems of nondeterministic polynomial (NP) time complexity such as PSP. Three refined GAs are presented: A farming model parallel hybrid GA (PHGA) preserves the effectiveness of the serial algorithm with substantial speed up. Portability across distributed and MPP platforms is accomplished with the Message Passing Interface (MPI) communications standard. A Real-valved GA system, real-valued Genetic Algorithm, Limited by constraints (REGAL), exploiting domain knowledge. Experiments with the pentapeptide Met-enkephalin have identified conformers with lower energies (CHARMM) than the accepted optimal conformer (Scheraga, et al), -31.98 vs -28.96 kcals/mol. Analysis of exogenous parameters yields additional insight into performance. A parallel version (Para-REGAL), an island model modified to allow different active constraints in the distributed subpopulations and novel concepts of Probability of Migration and Probability of Complete Migration

    A Multiobjective Approach Applied to the Protein Structure Prediction Problem

    Get PDF
    Interest in discovering a methodology for solving the Protein Structure Prediction problem extends into many fields of study including biochemistry, medicine, biology, and numerous engineering and science disciplines. Experimental approaches, such as, x-ray crystallographic studies or solution Nuclear Magnetic Resonance Spectroscopy, to mathematical modeling, such as minimum energy models are used to solve this problem. Recently, Evolutionary Algorithm studies at the Air Force Institute of Technology include the following: Simple Genetic Algorithm (GA), messy GA, fast messy GA, and Linkage Learning GA, as approaches for potential protein energy minimization. Prepackaged software like GENOCOP, GENESIS, and mGA are in use to facilitate experimentation of these techniques. In addition to this software, a parallelized version of the fmGA, the so-called parallel fast messy GA, is found to be good at finding semi-optimal answers in reasonable wall clock time. The aim of this work is to apply a Multiobjective approach to solving this problem using a modified fast messy GA. By dividing the CHARMm energy model into separate objectives, it should be possible to find structural configurations of a protein that yield lower energy values and ultimately more correct conformations

    Optimization of Heterogeneous UAV Communications Using the Multiobjective Quadratic Assignment Problem

    Get PDF
    The Air Force has placed a high priority on developing new and innovative ways to use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency (DARPA) currently funds many projects that deal with the advancement of UAV research. The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind, formation structuring of autonomous or semi-autonomous UAVs is of future importance. This particular research investigates the optimization of heterogeneous UAV multi-channel communications in formation. The problem maps to the multiobjective Quadratic Assignment Problem (mQAP). Optimization of this problem is done through the use of a Multiobjective Evolutionary Algorithm (MOEA) called the Multiobjective Messy Genetic Algorithm - II (MOMGA-II). Experimentation validates the attainment of an acceptable Pareto Front for a variety of mQAP benchmarks. It was observed that building block size can affect the location vectors along the current Pareto Front. The competitive templates used during testing perform best when they are randomized before each building block size evaluation. This tuning of the MOMGA-II parameters creates a more effective algorithm for the variety of mQAP benchmarks, when compared to the initial experiments. Thus this algorithmic approach would be useful for Air Force decision makers in determining the placement of UAVs in formations

    Analysis of Linkage-Friendly Genetic Algorithms

    Get PDF
    Evolutionary algorithms (EAs) are stochastic population-based algorithms inspired by the natural processes of selection, mutation, and recombination. EAs are often employed as optimum seeking techniques. A formal framework for EAs is proposed, in which evolutionary operators are viewed as mappings from parameter spaces to spaces of random functions. Formal definitions within this framework capture the distinguishing characteristics of the classes of recombination, mutation, and selection operators. EAs which use strictly invariant selection operators and order invariant representation schemes comprise the class of linkage-friendly genetic algorithms (lfGAs). Fast messy genetic algorithms (fmGAs) are lfGAs which use binary tournament selection (BTS) with thresholding, periodic filtering of a fixed number of randomly selected genes from each individual, and generalized single-point crossover. Probabilistic variants of thresholding and filtering are proposed. EAs using the probabilistic operators are generalized fmGAs (gfmGAs). A dynamical systems model of lfGAs is developed which permits prediction of expected effectiveness. BTS with probabilistic thresholding is modeled at various levels of abstraction as a Markov chain. Transitions at the most detailed level involve decisions between classes of individuals. The probability of correct decision making is related to appropriate maximal order statistics, the distributions of which are obtained. Existing filtering models are extended to include probabilistic individual lengths. Sensitivity of lfGA effectiveness to exogenous parameters limits practical applications. The lfGA parameter selection problem is formally posed as a constrained optimization problem in which the cost functional is related to expected effectiveness. Kuhn-Tucker conditions for the optimality of gfmGA parameters are derived

    Dependency structure matrix, genetic algorithms, and effective recombination

    Get PDF
    In many different fields, researchers are often confronted by problems arising from complex systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition is the key. In this paper, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bones interactions-modularity, hierarchy, and overlap, facet-wise models arc developed to dissect and inspect problem decomposition in the context of genetic algorithms. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and explicitly decompose the problem. The results from this paper should benefit research both technically and scientifically. Technically, this paper develops an automated dependency structure matrix clustering technique and utilizes it to design a model-building genetic algorithm that learns and delivers the problem structure. Scientifically, the explicit interaction model describes the problem structure very well and helps researchers gain important insights through the explicitness of the procedure.This work was sponsored by Taiwan National Science Council under grant NSC97- 2218-E-002-020-MY3, U.S. Air Force Office of Scientific Research, Air Force Material Command, USAF, under grants FA9550-06-1-0370 and FA9550-06-1-0096, U.S. National Science Foundation under CAREER grant ECS-0547013, ITR grant DMR-03-25939 at Materials Computation Center, grant ISS-02-09199 at US National Center for Supercomputing Applications, UIUC, and the Portuguese Foundation for Science and Technology under grants SFRH/BD/16980/2004 and PTDC/EIA/67776/2006
    • …
    corecore