549 research outputs found

    Deep Rectangling for Image Stitching: A Learning Baseline

    Full text link
    Stitched images provide a wide field-of-view (FoV) but suffer from unpleasant irregular boundaries. To deal with this problem, existing image rectangling methods devote to searching an initial mesh and optimizing a target mesh to form the mesh deformation in two stages. Then rectangular images can be generated by warping stitched images. However, these solutions only work for images with rich linear structures, leading to noticeable distortions for portraits and landscapes with non-linear objects. In this paper, we address these issues by proposing the first deep learning solution to image rectangling. Concretely, we predefine a rigid target mesh and only estimate an initial mesh to form the mesh deformation, contributing to a compact one-stage solution. The initial mesh is predicted using a fully convolutional network with a residual progressive regression strategy. To obtain results with high content fidelity, a comprehensive objective function is proposed to simultaneously encourage the boundary rectangular, mesh shape-preserving, and content perceptually natural. Besides, we build the first image stitching rectangling dataset with a large diversity in irregular boundaries and scenes. Experiments demonstrate our superiority over traditional methods both quantitatively and qualitatively.Comment: Accepted by CVPR2022 (oral); Codes and dataset: https://github.com/nie-lang/DeepRectanglin

    Content-preserving image stitching with piecewise rectangular boundary constraints

    Get PDF
    This paper proposes an approach to content-preserving image stitching with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with a piecewise rectangular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by the traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions. By analyzing the irregular boundary, we construct a piecewise rectangular boundary. Based on this, we further incorporate line and regular boundary preservation constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary. Thus we can make the boundary of the stitching results as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to video stitching, by integrating the temporal coherence into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions

    Stereoscopic image stitching with rectangular boundaries

    Get PDF
    This paper proposes a novel algorithm for stereoscopic image stitching, which aims to produce stereoscopic panoramas with rectangular boundaries. As a result, it provides wider field of view and better viewing experience for users. To achieve this, we formulate stereoscopic image stitching and boundary rectangling in a global optimization framework that simultaneously handles feature alignment, disparity consistency and boundary regularity. Given two (or more) stereoscopic images with overlapping content, each containing two views (for left and right eyes), we represent each view using a mesh and our algorithm contains three main steps: We first perform a global optimization to stitch all the left views and right views simultaneously, which ensures feature alignment and disparity consistency. Then, with the optimized vertices in each view, we extract the irregular boundary in the stereoscopic panorama, by performing polygon Boolean operations in left and right views, and construct the rectangular boundary constraints. Finally, through a global energy optimization, we warp left and right views according to feature alignment, disparity consistency and rectangular boundary constraints. To show the effectiveness of our method, we further extend our method to disparity adjustment and stereoscopic stitching with large horizon. Experimental results show that our method can produce visually pleasing stereoscopic panoramas without noticeable distortion or visual fatigue, thus resulting in satisfactory 3D viewing experience

    ???????????? ????????? ????????? ??????????????? ?????? ????????? ????????? ??????????????? ?????????

    Get PDF
    Department of Biomedical EngineeringImage stitching is a well-known method to make panoramic image which has a wide field-of-view and high resolution. It has been used in various fields such as digital map, gigapixel imaging, and 360-degree camera. However, commercial stitching tools often fail, require a lot of processing time, and only work on certain images. The problems of existing tools are mainly caused by trying to stitch the wrong image pair. To overcome these problems, it is important to select suitable image pair for stitching in advance. Nevertheless, there are no universal standards to judge the good image pairs. Moreover, the derived stitching algorithms cannot be compatible with each other because they conform to their own available criteria. Here, we present universal stitching parameters and their conditions for selecting good image pairs. The proposed stitching parameters can be easily calculated through analysis of corresponding features and homography, which are basic elements in feature-based image stitching algorithm. In order to specify the conditions of the stitching parameters, we devised a new method to calculate stitching accuracy for qualifying stitching results into 3 classesgood, bad, and fail. With the classed stitching results, the values of the stitching parameters could be checked how they differ in each class. Through experiments with large datasets, the most valid parameter for each class is identified as filtering level which is calculated in corresponding feature analysis. In addition, supplemental experiments were conducted with various datasets to demonstrate the validity of the filtering level. As a result of our study, universal stitching parameters can judge the success of stitching, so that it is possible to prevent stitching errors through parameter verification test in advance. This paper can greatly contribute to guide for creating high performance and high efficiency stitching software by applying the proposed stitching conditions.ope

    Parallax-Tolerant Image Stitching with Epipolar Displacement Field

    Full text link
    Large parallax image stitching is a challenging task. Existing methods often struggle to maintain both the local and global structures of the image while reducing alignment artifacts and warping distortions. In this paper, we propose a novel approach that utilizes epipolar geometry to establish a warping technique based on the epipolar displacement field. Initially, the warping rule for pixels in the epipolar geometry is established through the infinite homography. Subsequently, Subsequently, the epipolar displacement field, which represents the sliding distance of the warped pixel along the epipolar line, is formulated by thin plate splines based on the principle of local elastic deformation. The stitching result can be generated by inversely warping the pixels according to the epipolar displacement field. This method incorporates the epipolar constraints in the warping rule, which ensures high-quality alignment and maintains the projectivity of the panorama. Qualitative and quantitative comparative experiments demonstrate the competitiveness of the proposed method in stitching images large parallax
    corecore