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ABSTRACT 

 

Image stitching is a well-known method to make panoramic image which has a wide field-of-view 

and high resolution. It has been used in various fields such as digital map, gigapixel imaging, and 

360-degree camera. However, commercial stitching tools often fail, require a lot of processing time, 

and only work on certain images. The problems of existing tools are mainly caused by trying to stitch 

the wrong image pair. To overcome these problems, it is important to select suitable image pair for 

stitching in advance. Nevertheless, there are no universal standards to judge the good image pairs. 

Moreover, the derived stitching algorithms cannot be compatible with each other because they 

conform to their own available criteria. 

Here, we present universal stitching parameters and their conditions for selecting good image pairs. 

The proposed stitching parameters can be easily calculated through analysis of corresponding features 

and homography, which are basic elements in feature-based image stitching algorithm. In order to 

specify the conditions of the stitching parameters, we devised a new method to calculate stitching 

accuracy for qualifying stitching results into 3 classes; good, bad, and fail. With the classed stitching 

results, the values of the stitching parameters could be checked how they differ in each class. Through 

experiments with large datasets, the most valid parameter for each class is identified as filtering level 

which is calculated in corresponding feature analysis. In addition, supplemental experiments were 

conducted with various datasets to demonstrate the validity of the filtering level. As a result of our 

study, universal stitching parameters can judge the success of stitching, so that it is possible to prevent 

stitching errors through parameter verification test in advance. This paper can greatly contribute to 

guide for creating high performance and high efficiency stitching software by applying the proposed 

stitching conditions. 
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1. Introduction 

 

With the development of various imaging devices, we can obtain a variety of images that cannot be 

seen by the human eye or acquired by conventional pinhole cameras. In addition, the user can create 

desired images through the post-processing. Among many image processing technologies, image 

stitching can produce a wide field-of-view and high resolution image. Image stitching is a powerful 

technique for creating panoramic images while maintaining the quality of the original images. 

 

 
 

Figure 1.1 Panoramic image generation by image stitching 

 

There are two methods for image stitching, Direct (pixel-based) method and Feature-based method 

[1, 2]. The goal of both methods is to align the overlapping areas well and combine the given images, 

but the principle and application field are different. In Table 1, there is a comparison of the two 

methods, and note how the applications vary according to the advantages of each method. 

 

Depending on the strengths and weaknesses of the two methods, the application fields are quite 

different. Our research has adopted a feature-based method to deal with images acquired with more 

general photography. In feature-based image stitching, it is most important to determine the correct 

image pair among the given images. Selecting the correct image pairs and aligning them in the right 

order in one coordinate system is also known as image registration. Image registration directly affects 

stitching results, and its feature-based approach has several constraints. The constraints are that the 

image pairs have enough common areas to each other, and the parallax is small. We defined these 

constraints as stitching parameters and presented their conditions. The proposed stitching parameters 

can be computed through the basic elements of feature-based image stitching so that they can be used 

universally. Therefore, the universal stitching parameters are widely used for judging whether a given 



2 

image pair can be stitched. The use of universal stitching parameters makes it possible to reduce 

stitching errors by eliminating image pairs that were judged to fail stitching in advance. Moreover, the 

conditions of the stitching parameters are expected to be utilized as basic conditional statements in 

other stitching challenges. 

 

 

Table 1 Comparison of image stitching methods: Direct method vs Feature-based method 

 Direct (pixel-based) method Feature-based method 

Principle Minimizing the pixel-to-pixel dissimilarity 
Extracting corresponding features and deriving 

the relationship between two images 

Advantage 

 Make the best use of available information 

(e.g. camera pose when acquiring images) 

 Not affected by image features 

 Works with images without any information 

 Amount of computation is relatively small 

Drawback 
 Limited range of convergence 

 Not invariant to image scale and rotation 

 Must have enough features 

 Confused in too textural region 

 Corresponding features should be evenly 

distributed, and enough region must be 

shared between image pairs 

 Relies on robust feature extraction and 

matching schemes 

Application 

field 

 Position fixed multi-camera device 

 Microscope (but you need to know the 

camera’s environment such as camera pose, 

magnification, and motion model) 

 General photography 

(but images must have enough overlapping 

areas with sufficient features) 

 Microscope 

 

 
 

Figure 1.2 Schematic diagram of image stitching method and application field 
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1.1. Purpose of research 

 

Our research covers the creation of panoramas from multiple images captured in various cameras (or 

shooting environments) and examines feature-based image stitching techniques. Today, feature-based 

image stitching algorithms have evolved to produce good results in challenging environments. 

However, stitching technologies are still difficult to apply to commercial products because of their 

slow processing speed and huge amount of computation. To overcome the problem, commercially 

available stitching techniques used to limit camera movement or fix the camera placement. For 

imposing these constraints, we focused on what criteria could determine the proper movement and 

position of camera. As an example of the criteria (or guide) for proper movement for stitching, the 

camera should rotate within 40 degrees to the left. Thus, in order to specify restrictions on the camera, 

the criteria should be defined based on universal parameters since different types of cameras have to 

be calibrated. 

 

Meanwhile, in the case of panorama software, it is important to determine whether given image pairs 

are suitable for stitching. If we can know in advance that a given image pair is not appropriate for 

stitching, it can reduce stitching errors and increase stitching efficiency. Therefore, we need new 

criteria to indicate whether stitching is possible, and the criteria should be based on universal 

parameters that can be used as useful conditional statements in other software. Thus, the goal of our 

study is to define the universal stitching parameters and present their conditions. 

 

 

1.2. Overview: Feature-based image stitching 

 

 
 

Figure 1.3 Feature-based image stitching algorithm 

 

Feature-based image stitching includes various technologies of computer vision such as feature 

extraction, matching, 2D transformation [3], and image warping [4]. Each technique has a direct 

impact on feature-based image stitching results. In other words, in order to obtain high-quality results, 

appropriate feature extraction, feature matching, and image warping through 2D transformation 

should be performed. However, there is no information or guidance on the elements for stitching, and 

many issues arise due to the nature of the feature-based approach. The challenges currently reported 

are: 
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- Lack of features (e.g. plain wall) 

- Lack of local features (e.g. textural region) 

- Insufficient corresponding features 

- Feature matching errors 

- Optimal warping problems 

- Parallax handing 

 

 
 

Figure 1.4 Challenges of feature-based image stitching 

 

Due to the inherent characteristics of feature-based image stitching, it often fails if the available 

features are not sufficient. Feature-based image stitching failures also occur for the reasons of 

matching errors and warping problems, even if the features are sufficient. Recent studies on image 

stitching [5-18] focus on warping problems or 2D transformations. [14] explains that global 

transformation (or homography) is not suitable for real image acquisition conditions (e.g. casual 

camera motions, taken from various perspectives, large depth change, etc.). They proposed 

perspective-preserving warping by combining local projective transformations and similarity 

transformations which avoid perspective distortions. Optimal warping is directly related to parallax 

handing. In [15], they also use two types of warping that combined homography and content-

preserving warping. These advanced stitching techniques are great achievements in solving some of 

the challenges. However, each technique applied their own cost function to determine the appropriate 

warping method. The application of the own criteria has the limitation that it cannot be easily 

implemented or applied by other researchers. 
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2. Theory of Feature-based Image Stitching 

 

Given a sequence of consecutive images, multiple image stitching combines pairs of images with the 

most overlapping regions. Thus, it is very important to select the correct image pair in a given 

sequence of images, which is the key to improving the quality of the result and the efficiency of the 

work. Section 2 describes the basic form of the feature-based image stitching algorithm (Section 2.1) 

and proposes stitching parameters to determine the correct image pair (Section 2.2). 

 

 

2.1. Feature-based image stitching algorithm 

 

Feature-based image stitching algorithm is divided into three steps as follows [19]. 

1) Feature extraction and matching 

2) Homography estimation 

3) Image warping 

 

The first step is to fine the overlapping area (or common scene between two images). This step 

begins with extracting features from each image. The feature (or keypoint) is the image pattern which 

differs from its immediate neighborhood. There are many feature detectors or extractors, which are 

well documented in “Local Invariant Feature Detectors: A survey” [20]. For image stitching, SIFT 

(Scale Invariant Feature Transform) [21], SURF (Speeded Up Robust Features) [22], ORB (Oriented 

FAST and Rotated BRIEF) [23] are mostly used as feature extractors because they can robustly 

extract features which are invariant to translation, rotation, scale, and illumination. After feature 

extraction is complete, all features should be matched each other to find common features. The 

matching process popularly done by FLANN (Fast Library for Approximate Nearest Neighbors), open 

source library for nearest neighbor matching [24]. Through this matching process, we get many 

matched features. In order to get more reliable matched features, the user must define "Good matches". 

 

 
 

Figure 2.1 Feature extraction and matching (step 1) 
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The next step is estimating the homography through the good matches. The planar homography is a 

non-singular linear relationship between points on planes and it plays an important role in the 

geometry of multiple views [3]. The homography determines how to overlap images together for 

stitching. It is a 3×3 2D transformation matrix expressed in a homogeneous form in Eq. (1). The first 

2×2 submatrix of the Eq. (1) represents the rotation, scale, shearing, and reflection, [ℎ3, ℎ6] represent 

translation, [ℎ7, ℎ8] represent a perspective change. At least four corresponding points are required to 

estimate the homography, and the algorithm RANSAC (random sample consensus) is popularly used 

for good homography estimation [25]. 

H = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 1
] (1) 

 

 

 
 

Figure 2.2 Homography estimation (step 2) 
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The final step is image warping through the calculated homography. Image warping refers to the 

process of repositioning pixels in the original image [4]. Therefore, when the target image (or object) 

is warped with the homography matrix, the two images (reference and target image) can be stitched 

together based on the corresponding features. In addition, for better results, a process called blending 

which is used to produce seamless panoramas is included in the algorithm. Multi-band blending has 

been widely introduced for image stitching [2, 19]. 

 

 
 

Figure 2.3 Image warping (step 3) 

 

 

2.2. Stitching parameters 

 

We have focused on a basic algorithm of feature-based image stitching to define universal stitching 

parameters. We analyzed good matches and homography, which are key intermediates of feature-

based image stitching, to understand their physical meaning. Stitching parameters are constructed 

through two analysis methods, which are parameterized physical properties that can directly affect 

stitching result. First, two stitching parameters, number of good matches and filtering level are 

defined which are related with good matches through corresponding features analysis. Second, 

homograhy determinant, X and Y-axis scaling factor, and perspective distortion are defined as the 

stitching parameters that can be calculated from the homography matrix through homography analysis. 

 

 
 

Figure 2.4 Stitching parameters and their analysis in feature-based image stitching algorithm 
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1) Number of good matches 

Good matches (or corresponding features) are the most basic elements in feature-based image 

stitching [2, 19]. They are pairs of features which are extracted from two images, scene and object (or 

reference image and be stitched image). The features extracted from the two images can be 

corresponded to each other through various matching methods [26-28]. Image stitching uses 

flannMatcher [24] which can efficiently match high-dimensional vectorized features. 

 

Computation 

First, the features are extracted from the two images using the SURF (Speeded Up Robust Features) 

extractor. We used SURF because it can robustly extract features which are invariant to image scale, 

rotation, and illumination. The next step is matching, and we used the flannMatcher. The FLANN 

matcher maps all feature in the scene to the features of the object that have the minimum distance. 

Then, based on min_dist, which is the value of the most relevant matches, the final good matches are 

determined as the matches having the min_dist×3 relationship. 

 

 
 

Figure 2.5 Examples of good matches 

 

2) Filtering level 

The filtering level is a parameter that intuitively modified the probabilistic model proposed by [1]. 

It reflects the geometrical relationship of good matches. Most feature-based image stitching only 

determines the number of good matches to obtain a warping matrix, that is, suitable homography for 

stitching. In [29], if the number of good matches is more than 50% of the total image, stitching is 

considered possible. However, there are many cases where stitching failed even though the conditions 

were satisfied in our experimental results. In addition, if the corresponding features are highly 

scattered (Figure 2.6(b)), proper homography cannot be obtained. Therefore, a parameter was needed 

to quantify that the corresponding features are closely related. What we mean by the filtering level is 

how well filtered out the good matches from matches, and whether they are closely related to the 

appropriate domain. Check the characteristics of filtering level through Table 2. 
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Figure 2.6 Examples of good matches distribution 

 

Computation 

To calculate the filtering level, we need to find the matches area and the good matches area (Figure 

2.7). We obtain the area ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)) by finding the values of the outermost 

matches (𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥) among all matches. Good matches area is also obtained in the 

same way. 

Filtering level (%) =
Good matches area

Matches area
× 100 (2) 

 

 

Table 2 Characteristics of filtering level 

Filtering level Description 

Low (Excess filtering) 
 Too few good matches are filtered out of matches. 

 The overlapping area is very closely related. 

Middle (Proper filtering) 
 Sufficient number of good matches are filtered out of matches. 

 The overlapping area is closely related. 

High (Failure filtering) 
 Good matches are not filtered out of matches. 

 The overlapping area is not related. 
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Figure 2.7 Components of filtering level 

 

 
 

Figure 2.8 Graph of filtering level property 

 

3) Homography determinant (D) 

Homography is one of the 2D transformations and can represent various geometric relationships 

between two images. We estimate homography through the good matches. However, not all 

homographies estimated here are reliable. For example, good matches for homography estimation are 

wrong, or RANSAC fails to estimate proper homography. 

H = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 1
] (1) 

 

The first 2×2 submatrix in H (Eq. (1)), a 3×3 2D transformation matrix in homogeneous form, 

contains information of rotation, scale, shearing, and reflection. The determinant obtained from this 

submatrix induces various rotation sequences or position relationships (reflections, twist, concave) 

between the points in the result of the 2D transformation (Figure 2.9). Especially, in the case of the 

twist, since it is a change that cannot occur in the real three-dimensional space, we can judge that the 

abnormal homography has been obtained. The homography determinant that induces the twist has a 

negative value. Since D is an element that can cause extreme errors in the warping process for 

stitching, we must be able to determine the appropriate D value for stitching. 

D = ℎ1ℎ5 − ℎ2ℎ4 (3) 

 



11 

 
 

Figure 2.9 Homography determinant and morphology 

 

4) X-axis scaling factor (𝑺𝒙) 

𝑆𝑥 is a parameter indicating the length of the X-axis unit vector by the first 2×2 submatrix in the 

homography matrix. If the scaling factor is too large or too small, the stitching results will be strange. 

𝑆𝑥 = √ℎ1
2 + ℎ4

2 (4) 

 

5) Y-axis scaling factor (𝑺𝒚) 

𝑆𝑦 is a parameter that indicates the length of the y-axis unit vector by the first 2×2 submatrix in the 

homography matrix. 

𝑆𝑦 = √ℎ2
2 + ℎ5

2  (5) 

 

6) Perspective distortion (PD) 

The characteristic of “perspective” is that objects appear smaller as their distance increases the 

observer. So, the presence of perspective distortion means that the image plane of the rectangle 

gradually changes to a trapezoid. Similar to the scaling factor, if the PD value is too large, the 

distortion is severe. 

PD = √ℎ7
2 + ℎ8

2 (6) 
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3. Experimental Method & Results 

 

We present the conditions of stitching parameters through four experiments. 

Experiment 1: Efficient multiple image stitching method by grouping 

Experiment 2: Analysis of similarity between images by histogram comparison 

Experiment 3: Definition of universal stitching parameter condition 

Experiment 4: Validation of stitching parameter conditions 

In Section 3.5, we give examples of applications in term of industry and biology. The experiments use 

openCV, and the version is 2.4.13. The computer specification is Intel(R) Core(TM) i7-7700 CPU, 

16.00GB (RAM), 64bit, Windows10. 

 

 

3.1. Experiment 1: Efficient multiple image stitching method by grouping 

 

Multiple image stitching requires an enormous amount of computation and time. In particular, the 

reference image should match all other images in order to align the images to be combined with each 

other. If we can avoid unnecessary image matching processes through grouping, efficient multiple 

image stitching will be possible while reducing the risk of errors. Figure 3.1 is a panorama created by 

stitching 57 images. Here, the reference image (Red) is matched with a good image pair (Green) 

through a feature-based image stitching technique. In fact, the reference image is matched with the 

remaining 56 images to determine the best good image pair. This takes a lot of computation and time, 

and sometimes it can increase the probability of matching errors. If we can classify the wrong image 

pairs (Orange) that are not related to the reference image (Red) in advance, it will be a great 

advantage for multiple image stitching. 

 

 
 

Figure 3.1 Multiple image stitching 
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Dataset 

We prepared 15 image sequences obtained by rotating the camera horizontally. At this time, the 15 

images can be classified according to the shooting time, so grouping becomes easy. The size of all 

images in the dataset is 3000×2000 pixel. 

 

 
 

Figure 3.2 Image sequence as dataset of Experiment 1 

 

Experimental method 

We examine how much time is taken by stitching multiple images under different conditions, and 

consider the time-efficient stitching method. The four different conditions are as follows. 

 

A. Stitching 15 images at a time 

B. Dividing 15 images into two groups (7, 8 images) and stitching them respectively / Final stitching 

C. Dividing 15 images into three groups (5 images 3) and stitching them respectively / Final stitching 

D. Dividing 15 images into five groups (3 images 5) and stitching them respectively / Final stitching 

 

In the case of A, the stitching process is performed once to make the entire panorama. In order to 

stitch 15 images at once, all images must be loaded simultaneously in a vector of Mat format, and 

they should be matched to each other to form correct image pairs and determine the overall stitching 

order. On the other hand, in the case of B to D, 15 images are stitched in several groups instead of 

stitching at once. B divides 15 images into two groups and stitches them individually. The 

intermediate panoramas, which are the results of stitching each of the two groups, require another 

stitching to create the final panoramic image. Likewise, C stitches each of the three grouped images 

and performs final stitching with three intermediate panoramas. D divides the images into five groups 

and stitching them respectively, then performs final stitching with five intermediate panoramas. In 

short, B, C, and D are stitched in two steps, the total number of stitching operations is 3, 4, and 6. 
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Figure 3.3 Schematic diagram of the Experiment 1 (B, C, D conditions) 

 

We also stitched 15 images with Hugin, a commercial image stitching software [30]. Hugin creates a 

panoramic image through two steps. First, as an "align" step, the features of all given images are 

extracted and matched to determine the correct relationship between the images. Then, perform the 

"composite" step, which is to remapping the aligned images in one plane and blending them to make 

them seamless. Finally, Hugin crops properly to get a plain result. 

 

Result 

Figure 3.4 shows the results of each experiment. (a) to (d) have an average size of 11430×1910 pixel, 

and the error range is 10 pixels in width and height. (e) is the result of Hugin. Since Hugin crops itself 

when creating the final panoramic image, the average size of (e) is 7505×1257 pixel and the error 

range is 10 pixels in width. The results of each experiment are not visually different. 

 

Table 3.1 Processing time of stitching in each experimental condition (A~D, Hugin) 

 A B 
(1st / Final stage) 

C 
(1st / Final stage) 

D 
(1st / Final stage) 

Hugin 
(Align / Composite) 

#1 45.66 42.81 / 11.90 41.59 / 14.29 40.64 / 21.72 63.91 / 55.02 

#2 46.52 43.62 / 12.43 40.53 / 14.21 39.43 / 20.93 65.22 / 54.67 

#3 48.23 43.49 / 12.10 39.09 / 14.33 38.33 / 20.63 62.87 / 54.32 

#4 45.89 44.09 / 11.89 40.02 / 14.56 39.29 / 21.20 68.04 / 56.34 

#5 46.31 43.81 / 11.87 39.73 / 14.63 38.65 / 21.33 65.76 / 55.23 

Average 46.52 43.56 / 11.88 40.19 / 14.40 39.27 / 21.16 65.16 / 55.12 

Total 46.52 55.44 54.59 60.43 120.28 
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(a) Experiment A result 

 

 

 
(b) Experiment B result 

 

 

 
(c) Experiment C result 

 

 

 
(d) Experiment D result 

 

 

 
(e) Hugin result 

 

Figure 3.4 Results of stitching in each experimental condition (A~D, Hugin) 
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Table 3.1 shows the stitching processing time measured in five repeated experiments under each 

condition. For the B to D experimental data, it specifies the time taken to create the intermediate 

panorama (1st stage) and the time taken to generate the final panorama image (Final stage). 

 

 
 

Figure 3.5 Stitching time graph under different conditions 

 

Figure 3.5 is drawn based on the data in Table 3.1, and the points shown on the graph are the 

stitching time under each condition. In the legend to the left of the graph, the 1st stage means the 

processing time to stitch the grouped images to create the intermediate panoramas. The final stage is 

the time taken to stitch the intermediate panoramas to make the final panoramic image. In the case of 

A, since all 15 stitches are stitched at once, there is only value for 1st stage. On the other hand, Hugin 

has two types of time data that each takes to perform “align” and “composite”. The total stitching time 

is marked as star. 

 

Before analyzing the experimental data in Figure 3.5, we summarized the expected impact of 

grouping on stitching. Firstly, stitching without grouping has an advantage in that the stitching process 

is performed only once. However, it is expected that huge amounts of memory and time will be 

consumed to match many images at once. Secondly, grouping when stitching is expected to reduce the 

number of matching cases because it does not stitch large amounts of images at once. Therefore, 

memory and time can be consumed efficiently when stitching. However, if you do grouping, stitching 

should be done as many as the number of groups to get the final panoramic image. 
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In Figure 3.5, the stitching time of 1st stage shows different trend from the final stage and total time. 

To analyze the stitching time in the 1st stage in detail, we prepared the following graph (Figure 3.6). 

 

 
 

Figure 3.6 Relationship between number of source images and stitching time 

 

The graph in Figure 3.6 is the relationship between the number of source images and the stitching 

time, it shows that as the number of source images increases, the stitching time increases 

exponentially. This result is due to the exponential increase in the number of matching cases that take 

the longest time to process stitching. In other words, extracting and matching image features in 

feature-based image stitching has a significant effect on the speed as well as the quality of the 

stitching results. This can also be demonstrated in Hugin's results, where the “alignment” process 

takes more time than the “compositing” process. Therefore, stitching many images at once can be 

disadvantageous in terms of memory and speed. 

 

Nevertheless, in Figure 3.5, the total time taken to produce a final panoramic image, A is the shortest. 

We thought that the reason for this result is because we experimented with only 15 images. Also, our 

experiments were done with computer with sufficient memory and performance, so we had no 

difficulty stitching 15 images at once. However, if stitching more than 100 images, stitching at once 

without grouping is expected to limit in memory and speed. It may also be difficult to perform high 

speed stitching on devices with low memory and poor performance. Therefore, when a large amount 

of stitching is carried out, grouping will help in efficient memory allocation and processing time. 
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In fact, many groupings for stitching is not always good. This is because the more grouping is done, 

the more stitching is required. This is a trade-off between the amount and the number of stitching at 

once (Table 3.2). However, it is a good idea to group source images properly in some situations. For 

example, when there are huge amounts of source images to produce a very large panoramic image, 

grouping makes it possible to avoid unnecessary matching process between images which are not 

relevant at all. 

 

Table 3.2 Characteristics and effects of grouping in stitching 

 Size of intermediate panoramas Total number of stitching 

Divide into few groups 

(grouping less) 

Big 

→Take more time 

Small 

→Take less time 

Divide into many groups 

(grouping more) 

Small 

→Take less time 

Big 

→Take more time 

 

 

3.2. Experiment 2: Analysis of similarity between images by histogram comparison 

 

In image processing, a color histogram [31] is a representation of the color distribution in an image. 

A color histogram focuses only on the proportion of the number of different colors, regardless of the 

spatial location of the colors. So, they can indicate the essential tone of an image and the statistical 

distribution of colors. These histograms are often used to find similar images. The method consists of 

creating a histogram for each image, and then get a numerical parameter which express how well two 

histograms match with each other. To compare the histograms, first we have to choose a metric to 

express how well both histograms match. There are 4 different metrics to compute the matching, 

Correlation, Chi-Square, Intersection, Bhattacharyya distance [32]. 

 

Dataset 

We prepared two sets of image sequences. The size of images in image set 1 is 768×1024 pixel 

(Figure 3.7(a)). The size of images in image set 2 is 480×640 pixel (Figure 3.7(b)). In the two image 

sets, the reference images are 1 and 6, respectively. 

 

 
 

Figure 3.7 Two types of image sequences as dataset of Experiment 2 
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Experimental method 

We used the “Intersection method” in openCV's compareHist to scoring the similarity. For the 

intersection method, the higher the metric (score), the more accurate the match. 

𝑑(𝐻1, 𝐻2) = ∑ min (𝐻1(𝐼),  𝐻2(𝐼))

𝐼

 (7) 

 

Result 

 

 
 

Figure 3.8 Results of histogram comparison 

 

The main problem with histogram comparison for image classifications is that it ignores the 

appearance and texture of the object and depends only on the color of the object. Therefore, the 

histogram can be the same in other images sharing color information. In other words, there is no way 

to distinguish red apple from a red ball [33]. In fact, even in the result of Experiment 2, the histogram 

comparison cannot clearly find the most similar image. We should not be sure that the score means a 

value for the overlapping area. Therefore, we must find the correct image pairs using the local features 

of the image, not the histogram. 

 

 

3.3. Experiment 3: Definition of universal stitching parameter condition 

 

We should calculate the stitching accuracy to establish the conditions of the universal stitching 

parameters. Accuracy is usually calculated by comparing the experimental value with the correct 

value (or ground truth). In the case of image stitching, it is difficult to have ground truth. Because the 

main function of the stitching is to create an extended view of the image that cannot be acquired with 

a single camera, so the ground truth cannot be captured. Due to the absence of ground truth, the 

accuracy of image stitching is ambiguous to calculate. Nevertheless, previous stitching studies have 

been performed in their own way to evaluate improved stitching performance [34-37]. They presented 
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their evaluation of the new algorithm with the actual stitching results or with the values of their own 

evaluation parameters. However, it is impossible to apply them to other stitching studies, so we cannot 

use them in a way to calculate stitching accuracy in our experiments. 

 

We have devised a new experimental approach to calculate the accuracy of stitching and to establish 

reliable conditions for universal stitching parameters. To ensure the ground truth, we built a special 

dataset in a way that crops a single high-quality image. Then, we perform the feature-based image 

stitching with corresponding feature analysis and homography analysis to the cropped image. For the 

evaluation of each stitching result, an absolute difference method (opencv-absdiff) is applied to 

calculate the stitching accuracy. 

 

Dataset 

We prepared a high-quality image, including trees, mountains, buildings, objects, sidewalk blocks, 

etc., to create datasets with various information. Then, cut it into a 640×480 sized images with a 100-

pixel step. Each image can be stitched at various overlapping levels. The image pairs to be stitched are 

divided into case 1 (horizontal) and case 2 (vertical), and the overlapping degree is different. For 

example, in the case of overlapping level 1 in case 1, it means red-orange image pairs shown in the 

Figure 3.9(a), and red-yellow image pairs means overlapping level 2 in case 1. 

 

Experimental method 

The goal of our experiment is to calculate the stitching accuracy using the ground truth and to derive 

the values of the universal stitching parameters through the two analysis methods (Corresponding 

features analysis, Homography analysis). Stitching accuracy can be obtained using the difference 

between stitching result and ground truth (Eq. (8)). 

Accuracy(%) = (1 −
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
) × 100 (8) 

 

We used a normalization technique to calculate geometric errors (or differences) in stitching results. 

We normalized the reference image so that the object (or target image) can be stitched in any direction 

with respect to the reference image (Figure 3.10). Normalization is performed by centering the 

reference image and allocating as much as the object size for the up, down, left, and right directions. 

This normalization applies equally to the ground truth, which makes 1: 1 comparison possible with 

stitching results. Here, we compute the absolute difference between the normalized result and the 

normalized ground truth. By visualizing the absolute difference as an image (Figure 3.11(c)), we can 

count the number of pixels whose geometric positions are different from the ground truth. 
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Figure 3.9 Ground truth and cropped images as dataset of Experiment 3 

 

 

 
 

Figure 3.10 Conceptual diagram for normalization of reference image 
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Figure 3.11 Visualization of absolute difference between stitching result and ground truth 

 

Result 

We present the conditions of the stitching parameters based on the accuracy with 2258 stitching 

results. The stitching parameters are number of good matches and filtering level through the 

corresponding features analysis, and H, 𝑆𝑥, 𝑆𝑦, PD through the homography analysis. Figure 3.12 

shows the result of number of good matches and filtering level. Divide into three classes based on the 

point where a large change occurs between the data. Each of the three classes represents the stitching 

result as good, bad, and failure, and indicated in green, orange, and red. We present the result of 

corresponding features analysis based on accuracy (Figure 3.12 and Table 3.3). In fact, we also 

wanted to provide the conditions of good homography that directly affect the stitching results. 

Because the dataset we used was a cropped image pair based on constant motion, we could not have a 

variety of homography values. Nevertheless, we give the abnormal homography condition in Table 

3.3 based on the stitching failure cases. 

 

 
 

Figure 3.12 Number of good matches and filtering level based on stitching accuracy 
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Table 3.3 Conditions of number of good matches and filtering level 

Accuracy # of good matches Filtering level 

75-100% (Good) 50 ≤ 𝑁 < 200 50 ≤ 𝐿 < 78 

55-75% (Bad) 30 ≤ 𝑁 < 100 25 ≤ 𝑁 < 47 

0-55% (Fail) 𝑁 < 40 𝐿 < 16 𝑜𝑟 𝐿 ≥ 78 

 

Table 3.4 Tendency of homography components 

Accuracy D 𝑺𝒙 𝑺𝒚 PD 

75-100% (Good) 𝐷~1 𝑆𝑥~1 𝑆𝑦~1 𝑃𝐷~E-07 

55-75% (Bad) 𝐷~1 𝑆𝑥~1 𝑆𝑦~1 E-05≤ 𝑃𝐷 <E-07 

0-55% (Fail) 𝐷 < 0 𝑜𝑟 𝐷 > 50 𝑆𝑥 > 3 𝑆𝑦 > 3 𝑃𝐷 >E-03 

 

 

3.4. Experiment 4: Validation of stitching parameter conditions 

 

Experiment 4 was conducted to verify the conditions of the universal stitching parameters. We 

perform stitching in similar conditions to the actual stitching use and compute the values of the 

proposed stitching parameters. However, in such situation, the stitching accuracy cannot be calculated 

because the ground truth cannot be obtained. However, we classify the quality of the results into three 

classes and verify how the conditions of the proposed stitching parameters are valid for the real 

situation. Especially, we tried to verify the filtering level that presents the most obvious conditional 

statements according to the stitching result class. 

 

Dataset 

We prepared 155 image pairs which are acquired randomly. The datasets are obtained from various 

camera motion such as pan, tilt, translation (up, down, left, right), and zoom. 

 

 
 

Figure 3.13 Various images as dataset of Experiment 4 
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Experimental method 

Experiment 4 shows the results of the verification of the filtering level in Experiment 3. We stitch the 

image pairs obtained from various perspectives and analyze the filtering level according to each 

stitching result. The evaluation of the stitching results was determined by subjective judgment because 

the existing accuracy calculation cannot be applied. Judgment of the stitching result can be divided 

into three classes (good, bad and fail) as shown in Figure 3.14. After that, the filtering level of each 

image pair is analyzed based on the criteria shown in Table 3.3, whether it is true or false. 

 

 
 

Figure 3.14 Examples of three classes (a-good, b-bad, c-fail) of stitching result 

 

Result 

Table 3.5 Classification result of filtering level condition in good class 

Good 
Condition (Filtering level) 

Positive (50 ≤ 𝐿 < 78) Negative 

Experimental Result 
Positive TP = 29 FP = 37 

Negative FN = 21 TN = 68 

 

Table 3.6 Classification result of filtering level condition in bad class 

Bad 
Condition (Filtering level) 

Positive (25 ≤ 𝑁 < 47) Negative 

Experimental Result 
Positive TP = 13 FP = 23 

Negative FN = 31 TN = 88 

 

Table 3.7 Classification result of filtering level condition in fail class 

Fail 
Condition (Filtering level) 

Positive (𝐿 < 16 𝑜𝑟 𝐿 ≥ 78) Negative 

Experimental Result 
Positive TP = 14 FP = 39 

Negative FN = 24 TN = 78 

 

Table 3.8 Verification of filtering level condition 

Stitching result class Filtering level TNR (Specificity) Accuracy 

Good 50 ≤ 𝐿 < 78 0.6667 0.5935 

Bad 25 ≤ 𝑁 < 47 0.7928 0.6516 

Fail 𝐿 < 16 𝑜𝑟 𝐿 ≥ 78 0.6476 0.6258 

 

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
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3.5. Applications 

 

1) Panoramic image production based on high-quality bloodstain image search 

 

The bloodstains at the crime scene play an important role in reconstructing the incident and 

determining the direction of the investigation. The detailed features of bloodstain such as shape, 

distribution, form, and the number are mainly obtained through close-up photography. Most scientific 

investigations use a high-resolution camera to obtain clear bloodstain information and use a landmark 

that consists of a specific pattern or scale to indicate the size and location of the bloodstain. In order to 

reconstruct the crime scene, it is important to understand the positional relationship and distribution of 

the bloodstains in the three-dimensional space. However, since high-resolution bloodstain images are 

close-up photographs that do not have a wide field-of-view, the spatial position of the bloodstain is 

unknown. To solve the problem, we produced a panorama to display the overall space of crime scene 

and link the corresponding high-resolution bloodstains pictures on the panorama to recognize the 

spatial distribution information of the bloodstains. 

 

 
 

Figure 3.15 Panoramic image production based on high-quality target image search 
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2) Feature-based image stitching in a microscope 

 

Microscope is an instrument used to observe objects that are too small to be seen by the naked eye. 

The field-of-view of the object image is determined from the objective lens. The higher the 

magnification of the microscope, the smaller the field-of-view of image. In order to have a wide field-

of-view, a low-magnification objective lens must be selected, so that high-resolution imaging is 

impossible. With image stitching technology, wide field-of-view can be obtained even when the 

resolution is constant at high-magnification objective lens. This is significant to overcome the 

physical limitations set by the objective lens. Recently, image stitching has been used well in the 

microscopy [38]. We performed image stitching with various kinds of source images obtained by 

microscope and present the results. In particular, we confirmed that the feature-based image stitching 

works well with images of biological cell and tissue rather than general objects and landscape images. 

The source images in Figure 3.16 and Figure 3.17 are live captures with the stage moving freely. 

They have fine lines and complex textures as bio-images, and they support only a single color due to 

the dyeing characteristic for visualization. 

 

 
 

Figure 3.16 Microscope photographs of f-lobule tissue and their stitching result 
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Figure 3.17 Microscope photographs of cartilage cells of rats and their stitching result 
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4. Discussion 

 

This paper describes the effects of grouping (Experiment 1) in stitching, histogram comparison 

(Experiment 2) for finding similar images for grouping, and stitching conditions based on universal 

stitching parameters (Experiment 3). First, grouping has obvious advantages in multiple image 

stitching. It can reduce the amount of computation to be processed at once through grouping, so 

feature-based stitching can work well on devices with insufficient memory. In addition, unnecessary 

matching processes can be reduced in advance, and a stitching failure due to a matching error can be 

avoided through grouping. 

 

We identified the benefits of grouping and were deeply concerned about the methodology of 

grouping. If we have a well-ordered image sequence, grouping is easy. However, given randomly 

mixed images, we should determine pairs of similar or related images. We have attempted to group 

images using histogram comparisons that are widely used when analyzing image similarity. As a 

result, the most similar image of the reference image can be presented through a specific score, but we 

have identified the limit that the histogram considers only the color distribution of the entire image. 

 

For good stitching results, the geometric distribution of corresponding features in the given image 

pair must be shared without severe distortion, so we need to parameterize it. We defined the essential 

conditions for a good image pair through six parameters that are computed through corresponding 

features analysis and homography analysis. In Experiment 3, a special dataset was constructed to 

define conditions of the stitching parameters based on the stitching accuracy, thus providing clear 

stitching conditions. 

 

The application of feature-based image stitching depends on the characteristics of the image. We 

covered the differences between the general industrial sector and the bio-imaging sector through the 

application examples in Section 3.5. In bioimaging, feature-based image stitching technology is still 

poorly developed. Because biomaterials are texturally duplicated with similar features, the feature 

extraction and matching errors occur frequently. Moreover, bioimaging reveals the structure of the 

sample through dyeing, so if the dyeing supports only one color, the diversity of color channels is also 

less than that of general industrial images. Therefore, in order to apply feature-based image stitching 

well in bio-imaging, other parameters such as camera acquisition path should be actively utilized. 
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5. Conclusion 

 

This paper deals with the analysis and application of feature-based image stitching, and we have 

defined the universal stitching parameters for successful stitching. The values of the universal 

stitching parameters can be computed by analyzing the corresponding features and homography 

which are essential elements in feature-based image stitching algorithm. To evaluate the stitching 

results, we calculated the stitching accuracy through the ground truth obtained from the cropped 

images. Based on the stitching accuracy, conditions of the six stitching parameters (number of good 

matches, filtering level, homography determinant, X and Y-axis scaling factor, and perspective 

distortion) were established and validated through various datasets. We can apply the proposed 

stitching conditions to remove the wrongly selected image pair which is the main cause of stitching 

failure in advance. In addition, the advantage that the stitching parameters of the proposed condition 

are universal, will allow other researchers to easily use our stitching conditions. 
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