5,665 research outputs found

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author

    Multi-View Data Generation Without View Supervision

    Get PDF
    The development of high-dimensional generative models has recently gained a great surge of interest with the introduction of variational auto-encoders and generative adversarial neural networks. Different variants have been proposed where the underlying latent space is structured, for example, based on attributes describing the data to generate. We focus on a particular problem where one aims at generating samples corresponding to a number of objects under various views. We assume that the distribution of the data is driven by two independent latent factors: the content, which represents the intrinsic features of an object, and the view, which stands for the settings of a particular observation of that object. Therefore, we propose a generative model and a conditional variant built on such a disentangled latent space. This approach allows us to generate realistic samples corresponding to various objects in a high variety of views. Unlike many multi-view approaches, our model doesn't need any supervision on the views but only on the content. Compared to other conditional generation approaches that are mostly based on binary or categorical attributes, we make no such assumption about the factors of variations. Our model can be used on problems with a huge, potentially infinite, number of categories. We experiment it on four image datasets on which we demonstrate the effectiveness of the model and its ability to generalize.Comment: Published as a conference paper at ICLR 201
    corecore