11,780 research outputs found

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    Document Based Clustering For Detecting Events in Microblogging Websites

    Get PDF
    Social media has a great in?uence in our daily lives. People share their opinions, stories, news, and broadcast events using social media. This results in great amounts of information in social media. It is cumbersome to identify and organize the interesting events with this massive volumes of data, typically browsing, searching, monitoring events becomes more and more challenging. A lot of work has been done in the area of topic detection and tracking (TDT). Most of these methods are based on single-modality (e.g., text, images) information or multi-modality information. In the single-modality analysis, many existing methods adopt visual information (e.g., images and videos) or textual information (e.g., names, time references, locations, title, tags, and description) in isolation to model event data for event detection and tracking. This problem can be resolved by a novel multi-model social event tracking and an evolutionary framework not only effectively capturing the events, but also generates the summary of these events over time. We proposed a novel method works with mmETM, which can effectively model the social documents, which includes the long text along with the images. It learns the similarities between the textual and visual modalities to separate the visual and non-visual representative topics. To incorporate our method to social tracking, we adopted an incremental learning technique represented as mmETM, which gives informative textual and visual topics of event in social media with respect to the time. To validate our work, we used a sample data set and conducted various experiments on it. Both subjective and quantitative assessments show that the proposed mmETM technique performs positively against a few best state-of-the art techniques

    The Dynamics of Multi-Modal Networks

    Get PDF
    The widespread study of networks in diverse domains, including social, technological, and scientific settings, has increased the interest in statistical and machine learning techniques for network analysis. Many of these networks are complex, involving more than one kind of entity, and multiple relationship types, both changing over time. While there have been many network analysis methods proposed for problems such as network evolution, community detection, information diffusion and opinion leader identification, the majority of these methods assume a single entity type, a single edge type and often no temporal dynamics. One of the main shortcomings of these traditional techniques is their inadequacy for capturing higher-order dependencies often present in real, complex networks. To address these shortcomings, I focus on analysis and inference in dynamic, multi-modal, multi-relational networks, containing multiple entity types (such as people, social groups, organizations, locations, etc.), and different relationship types (such as friendship, membership, affiliation, etc.). An example from social network theory is a network describing users, organizations and interest groups, where users have different types of ties among each other, such as friendship, family ties, etc., as well as affiliation and membership links with organizations and interest groups. By considering the complex structure of these networks rather than limiting the analysis to a single entity or relationship type, I show how we can build richer predictive models that provide better understanding of the network dynamics, and thus result in better quality predictions. In the first part of my dissertation, I address the problems of network evolution and clustering. For network evolution, I describe methods for modeling the interactions between different modalities, and propose a co-evolution model for social and affiliation networks. I then move to the problem of network clustering, where I propose a novel algorithm for clustering multi-modal, multi-relational data. The second part of my dissertation focuses on the temporal dynamics of interactions in complex networks, from both user-level and network-level perspectives. For the user-centric approach, I analyze the dynamics of user relationships with other entity types, proposing a measure of the "loyalty" a user shows for a given group or topic, based on her temporal interaction pattern. I then move to macroscopic-level approaches for analyzing the dynamic processes that occur on a network scale. I propose a new differential adaptive diffusion model for incorporating diversity and trust in the process of information diffusion on multi-modal, multi-relational networks. I also discuss the implications of the proposed diffusion model on designing new strategies for viral marketing and influential detection. I validate all the proposed methods on several real-world networks from multiple domains

    False News On Social Media: A Data-Driven Survey

    Full text link
    In the past few years, the research community has dedicated growing interest to the issue of false news circulating on social networks. The widespread attention on detecting and characterizing false news has been motivated by considerable backlashes of this threat against the real world. As a matter of fact, social media platforms exhibit peculiar characteristics, with respect to traditional news outlets, which have been particularly favorable to the proliferation of deceptive information. They also present unique challenges for all kind of potential interventions on the subject. As this issue becomes of global concern, it is also gaining more attention in academia. The aim of this survey is to offer a comprehensive study on the recent advances in terms of detection, characterization and mitigation of false news that propagate on social media, as well as the challenges and the open questions that await future research on the field. We use a data-driven approach, focusing on a classification of the features that are used in each study to characterize false information and on the datasets used for instructing classification methods. At the end of the survey, we highlight emerging approaches that look most promising for addressing false news

    A Survey on Visual Analytics of Social Media Data

    Get PDF
    The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, ha..

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore