174,579 research outputs found
Multi-modal gated recurrent units for image description
Using a natural language sentence to describe the content of an image is a
challenging but very important task. It is challenging because a description
must not only capture objects contained in the image and the relationships
among them, but also be relevant and grammatically correct. In this paper a
multi-modal embedding model based on gated recurrent units (GRU) which can
generate variable-length description for a given image. In the training step,
we apply the convolutional neural network (CNN) to extract the image feature.
Then the feature is imported into the multi-modal GRU as well as the
corresponding sentence representations. The multi-modal GRU learns the
inter-modal relations between image and sentence. And in the testing step, when
an image is imported to our multi-modal GRU model, a sentence which describes
the image content is generated. The experimental results demonstrate that our
multi-modal GRU model obtains the state-of-the-art performance on Flickr8K,
Flickr30K and MS COCO datasets.Comment: 25 pages, 7 figures, 6 tables, magazin
Fuzzy Interval-Valued Multi Criteria Based Decision Making for Ranking Features in Multi-Modal 3D Face Recognition
Soodamani Ramalingam, 'Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition', Fuzzy Sets and Systems, In Press version available online 13 June 2017. This is an Open Access paper, made available under the Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/This paper describes an application of multi-criteria decision making (MCDM) for multi-modal fusion of features in a 3D face recognition system. A decision making process is outlined that is based on the performance of multi-modal features in a face recognition task involving a set of 3D face databases. In particular, the fuzzy interval valued MCDM technique called TOPSIS is applied for ranking and deciding on the best choice of multi-modal features at the decision stage. It provides a formal mechanism of benchmarking their performances against a set of criteria. The technique demonstrates its ability in scaling up the multi-modal features.Peer reviewedProo
Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration
Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship
Understanding of Object Manipulation Actions Using Human Multi-Modal Sensory Data
Object manipulation actions represent an important share of the Activities of
Daily Living (ADLs). In this work, we study how to enable service robots to use
human multi-modal data to understand object manipulation actions, and how they
can recognize such actions when humans perform them during human-robot
collaboration tasks. The multi-modal data in this study consists of videos,
hand motion data, applied forces as represented by the pressure patterns on the
hand, and measurements of the bending of the fingers, collected as human
subjects performed manipulation actions. We investigate two different
approaches. In the first one, we show that multi-modal signal (motion, finger
bending and hand pressure) generated by the action can be decomposed into a set
of primitives that can be seen as its building blocks. These primitives are
used to define 24 multi-modal primitive features. The primitive features can in
turn be used as an abstract representation of the multi-modal signal and
employed for action recognition. In the latter approach, the visual features
are extracted from the data using a pre-trained image classification deep
convolutional neural network. The visual features are subsequently used to
train the classifier. We also investigate whether adding data from other
modalities produces a statistically significant improvement in the classifier
performance. We show that both approaches produce a comparable performance.
This implies that image-based methods can successfully recognize human actions
during human-robot collaboration. On the other hand, in order to provide
training data for the robot so it can learn how to perform object manipulation
actions, multi-modal data provides a better alternative
- …
