20,685 research outputs found
Recommended from our members
Multi-Material Ultrasonic Consolidation
Ultrasonic consolidation (UC) is a recently developed direct metal solid freeform
fabrication process. While the process has been well-demonstrated for part fabrication in Al alloy
3003 H18, including with intricate cooling channels, some of the potential strengths of the
process have not been fully exploited. One of them is its flexibility with build materials and the
other is its suitability for fabrication of multi-material and functionally graded material parts with
enhanced functional or mechanical properties. Capitalizing on these capabilities is critical for
broadening the application range and commercial utilization of the process. In the current work,
UC was used to investigate ultrasonic bonding of a broad range of engineering materials, which
included stainless steels, Ni-base alloys, brass, Al alloys, and Al alloy composites. UC multimaterial part fabrication was examined using Al alloy 3003 as the bulk part material and the
above mentioned materials as performance enhancement materials. Studies were focused on
microstructural aspects to evaluate interface characteristics between dissimilar material layers.
The results showed that most of these materials can be successfully bonded to Al alloy 3003 and
vice versa using the ultrasonic consolidation process. Bond formation and interface
characteristics between various material combinations are discussed based on oxide layer
characteristics, material properties, and others.Mechanical Engineerin
Total variation regularization of multi-material topology optimization
This work is concerned with the determination of the diffusion coefficient
from distributed data of the state. This problem is related to homogenization
theory on the one hand and to regularization theory on the other hand. An
approach is proposed which involves total variation regularization combined
with a suitably chosen cost functional that promotes the diffusion coefficient
assuming prespecified values at each point of the domain. The main difficulty
lies in the delicate functional-analytic structure of the resulting
nondifferentiable optimization problem with pointwise constraints for functions
of bounded variation, which makes the derivation of useful pointwise optimality
conditions challenging. To cope with this difficulty, a novel reparametrization
technique is introduced. Numerical examples using a regularized semismooth
Newton method illustrate the structure of the obtained diffusion coefficient.
A continues multi-material toolpath planning for tissue scaffolds with hollowed features
This paper presents a new multi-material based toolpath planning methodology for porous tissue scaffolds with multiple hollowed features. Ruled surface with hollowed features generated in our earlier work is used to develop toolpath planning. Ruling lines are reoriented to enable continuous and uniform size multi-material printing through them in two steps. Firstly, all ruling lines are matched and connected to eliminate start and stops during printing. Then, regions with high number of ruling lines are relaxed using a relaxation technique to eliminate over deposition. A novel layer-by-layer deposition process is progressed in two consecutive layers: The first layer with hollow shape based zigzag pattern and the next layer with spiral pattern deposition. Heterogeneous material properties are mapped based on the parametric distances from the hollow features
A conservative sharp-interface method for compressible multi-material flows
In this paper we develop a conservative sharp-interface method dedicated to
simulating multiple compressible fluids. Numerical treatments for a cut cell
shared by more than two materials are proposed. First, we simplify the
interface interaction inside such a cell with a reduced model to avoid explicit
interface reconstruction and complex flux calculation. Second, conservation is
strictly preserved by an efficient conservation correction procedure for the
cut cell. To improve the robustness, a multi-material scale separation model is
developed to consistently remove non-resolved interface scales. In addition,
the multi-resolution method and local time-stepping scheme are incorporated
into the proposed multi-material method to speed up the high-resolution
simulations. Various numerical test cases, including the multi-material shock
tube problem, inertial confinement fusion implosion, triple-point shock
interaction and shock interaction with multi-material bubbles, show that the
method is suitable for a wide range of complex compressible multi-material
flows
An adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries
We review a scalable two- and three-dimensional computer code for
low-temperature plasma simulations in multi-material complex geometries. Our
approach is based on embedded boundary (EB) finite volume discretizations of
the minimal fluid-plasma model on adaptive Cartesian grids, extended to also
account for charging of insulating surfaces. We discuss the spatial and
temporal discretization methods, and show that the resulting overall method is
second order convergent, monotone, and conservative (for smooth solutions).
Weak scalability with parallel efficiencies over 70\% are demonstrated up to
8192 cores and more than one billion cells. We then demonstrate the use of
adaptive mesh refinement in multiple two- and three-dimensional simulation
examples at modest cores counts. The examples include two-dimensional
simulations of surface streamers along insulators with surface roughness; fully
three-dimensional simulations of filaments in experimentally realizable
pin-plane geometries, and three-dimensional simulations of positive plasma
discharges in multi-material complex geometries. The largest computational
example uses up to million mesh cells with billions of unknowns on
computing cores. Our use of computer-aided design (CAD) and constructive solid
geometry (CSG) combined with capabilities for parallel computing offers
possibilities for performing three-dimensional transient plasma-fluid
simulations, also in multi-material complex geometries at moderate pressures
and comparatively large scale.Comment: 40 pages, 21 figure
Recommended from our members
Virtual Simulation for Multi-material LM Process
In an ONR funded MURI program, to improve quality of multi-material parts,
we've been developing an advanced computer simulation for the multi-material layered
manufacturing (LM) process. The CAD models and their .stLfiles are created using. the
commercially available software such as I-DEAS and ProE. Using this information, one
tool path file per material is generated. Our file preparation algorithm, systematically,
layer by layer, integrates all tool path files into one multi-material tool path file. The
results of the multi-material tool path are graphically visualized using the simulation
algorithm (written in c++ & SGI OpenGL). From a virtual simulation, we can check the
LM process, and make the best selection of tool path parameters afterwards. After several
trials from design to simulation, if the simulation result is acceptable, the real
manufacturing can be started. And the part's quality should be better than a part
manufactured without running simulation in advance. This paper will represent .•. new
studies on using real toadshapes to get more realistic simulation results. Many parts have
been successfully simulated using our method.Mechanical Engineerin
- …
