382 research outputs found

    Towards a query language for annotation graphs

    Get PDF
    The multidimensional, heterogeneous, and temporal nature of speech databases raises interesting challenges for representation and query. Recently, annotation graphs have been proposed as a general-purpose representational framework for speech databases. Typical queries on annotation graphs require path expressions similar to those used in semistructured query languages. However, the underlying model is rather different from the customary graph models for semistructured data: the graph is acyclic and unrooted, and both temporal and inclusion relationships are important. We develop a query language and describe optimization techniques for an underlying relational representation.Comment: 8 pages, 10 figure

    ATLAS: A flexible and extensible architecture for linguistic annotation

    Full text link
    We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the reuse of tools that interact through this API. We focus first on ``Annotation Graphs,'' a graph model for annotations on linear signals (such as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider variety of linguistic ``signals,'' including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions, etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key pieces of this architecture.Comment: 8 pages, 9 figure

    A Formal Framework for Linguistic Annotation

    Get PDF
    `Linguistic annotation' covers any descriptive or analytic notations applied to raw language data. The basic data may be in the form of time functions -- audio, video and/or physiological recordings -- or it may be textual. The added notations may include transcriptions of all sorts (from phonetic features to discourse structures), part-of-speech and sense tagging, syntactic analysis, `named entity' identification, co-reference annotation, and so on. While there are several ongoing efforts to provide formats and tools for such annotations and to publish annotated linguistic databases, the lack of widely accepted standards is becoming a critical problem. Proposed standards, to the extent they exist, have focussed on file formats. This paper focuses instead on the logical structure of linguistic annotations. We survey a wide variety of existing annotation formats and demonstrate a common conceptual core, the annotation graph. This provides a formal framework for constructing, maintaining and searching linguistic annotations, while remaining consistent with many alternative data structures and file formats.Comment: 49 page

    The EMU-SDMS

    Get PDF

    Estimating Speaking Rate by Means of Rhythmicity Parameters

    Get PDF
    In this paper we present a speech rate estimator based on so-called rhythmicity features derived from a modified version of the short-time energy envelope. To evaluate the new method, it is compared to a traditional speech rate estimator on the basis of semi-automatic segmentation. Speech material from the Alcohol Language Corpus (ALC) covering intoxicated and sober speech of different speech styles provides a statistically sound foundation to test upon. The proposed measure clearly correlates with the semi-automatically determined speech rate and seems to be robust across speech styles and speaker states

    TEMPORAL DATA EXTRACTION AND QUERY SYSTEM FOR EPILEPSY SIGNAL ANALYSIS

    Get PDF
    The 2016 Epilepsy Innovation Institute (Ei2) community survey reported that unpredictability is the most challenging aspect of seizure management. Effective and precise detection, prediction, and localization of epileptic seizures is a fundamental computational challenge. Utilizing epilepsy data from multiple epilepsy monitoring units can enhance the quantity and diversity of datasets, which can lead to more robust epilepsy data analysis tools. The contributions of this dissertation are two-fold. One is the implementation of a temporal query for epilepsy data; the other is the machine learning approach for seizure detection, seizure prediction, and seizure localization. The three key components of our temporal query interface are: 1) A pipeline for automatically extract European Data Format (EDF) information and epilepsy annotation data from cross-site sources; 2) Data quantity monitoring for Epilepsy temporal data; 3) A web-based annotation query interface for preliminary research and building customized epilepsy datasets. The system extracted and stored about 450,000 epilepsy-related events of more than 2,497 subjects from seven institutes up to September 2019. Leveraging the epilepsy temporal events query system, we developed machine learning models for seizure detection, prediction, and localization. Using 135 extracted features from EEG signals, we trained a channel-based eXtreme Gradient Boosting model to detect seizures on 8-second EEG segments. A long-term EEG recording evaluation shows that the model can detect about 90.34% seizures on an existing EEG dataset with 961 hours of data. The model achieved 89.88% accuracy, 92.32% sensitivity, and 84.76% AUC based on the segments evaluation. We also introduced a transfer learning approach consisting of 1) a base deep learning model pre-trained by ImageNet dataset and 2) customized fully connected layers, to train the patient-specific pre-ictal and inter-ictal data from our database. Two convolutional neural network architectures were evaluated using 53 pre-ictal segments and 265 continuous hours of inter-ictal EEG data. The evaluation shows that our model reached 86.79% sensitivity and 3.38% false-positive rate. Another transfer learning model for seizure localization uses a pre-trained ResNext50 structure and was trained with an image augmentation dataset labeling by fingerprint. Our model achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3% positive likelihood rate
    • 

    corecore