38 research outputs found

    BlobCR: Virtual Disk Based Checkpoint-Restart for HPC Applications on IaaS Clouds

    Get PDF
    International audienceInfrastructure-as-a-Service (IaaS) cloud computing is gaining significant interest in industry and academia as an alternative platform for running HPC applications. Given the need to provide fault tolerance, support for suspend-resume and offline migration, an efficient Checkpoint-Restart mechanism becomes paramount in this context. We propose BlobCR, a dedicated checkpoint repository that is able to take live incremental snapshots of the whole disk attached to the virtual machine (VM) instances. BlobCR aims to minimize the performance overhead of checkpointing by persisting VM disk snapshots asynchronously in the background using a low overhead technique we call selective copy-on-write. It includes support for both application-level and process-level checkpointing, as well as support to roll back file system changes. Experiments at large scale demonstrate the benefits of our proposal both in synthetic settings and for a real-life HPC application

    Resource-Efficient Replication and Migration of Virtual Machines.

    Full text link
    Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. Each replicated VM also incurs a 100% memory overhead, since the backup unproductively reserves the same amount of memory to hold the redundant VM state. Live migration, though being widely used for load-balancing, power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively. In addition, it can incur a long completion time and degrade application performance. This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate the tradeoffs in using different compression methods to reduce the network traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics that are specifically important in a HA system, and then suggest guidelines for their selection. Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by loading a small amount of essential VM state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand. Finally, we propose application-assisted live migration, which skips transfer of VM memory that need not be migrated to execute running applications at the destination. We develop a generic framework for the proposed approach, and then use the framework to build JAVMM, a system that migrates VMs running Java applications skipping transfer of garbage in Java memory. Our evaluation results show that compared to Xen live migration, which is agnostic of running applications, JAVMM can reduce the completion time, network traffic and application downtime caused by Java VM migration, all by up to over 90%.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111575/1/karenhou_1.pd

    Efficient Main Memory Deduplication Through Cross Layer Integration

    Get PDF
    Limited main memory size is the primary bottleneck for consolidating VMs. Memory scanners reduce the memory footprint of VMs by eliminating duplicate memory pages. Our approach extends main memory scanners through Cross Layer I/O-based Hints (XLH). Compared to scanners such as KSM, XLH can merge equal pages that stem from the virtual disk image earlier by minutes and is capable of saving up to eight times as much memory, at the same scan-rate

    DDEAS: Distributed Deduplication System with Efficient Access in Cloud Data Storage

    Get PDF
    Cloud storage service is one of the vital function of cloud computing that helps cloud users to outsource a massive volume of data without upgrading their devices. However, cloud data storage offered by Cloud Service Providers (CSPs) faces data redundancy problems. The data de-duplication technique aims to eliminate redundant data segments and keeps a single instance of the data set, even if similar data set is owned by any number of users. Since data blocks are distributed among the multiple individual servers, the user needs to download each block of the file before reconstructing the file, which reduces the system efficiency. We propose a server level data recover module in the cloud storage system to improve file access efficiency and reduce network bandwidth utilization time. In the proposed method, erasure coding is used to store blocks in distributed cloud storage and The MD5 (Message Digest 5) is used for data integrity. Executing recover algorithm helps user to directly fetch the file without downloading each block from the cloud servers. The proposed scheme improves the time efficiency of the system and quick access ability to the stored data. Thus consumes less network bandwidth and

    Improving Data Management and Data Movement Efficiency in Hybrid Storage Systems

    Get PDF
    University of Minnesota Ph.D. dissertation.July 2017. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); ix, 116 pages.In the big data era, large volumes of data being continuously generated drive the emergence of high performance large capacity storage systems. To reduce the total cost of ownership, storage systems are built in a more composite way with many different types of emerging storage technologies/devices including Storage Class Memory (SCM), Solid State Drives (SSD), Shingle Magnetic Recording (SMR), Hard Disk Drives (HDD), and even across off-premise cloud storage. To make better utilization of each type of storage, industries have provided multi-tier storage through dynamically placing hot data in the faster tiers and cold data in the slower tiers. Data movement happens between devices on one single device and as well as between devices connected via various networks. Toward improving data management and data movement efficiency in such hybrid storage systems, this work makes the following contributions: To bridge the giant semantic gap between applications and modern storage systems, passing a piece of tiny and useful information (I/O access hints) from upper layers to the block storage layer may greatly improve application performance or ease data management in heterogeneous storage systems. We present and develop a generic and flexible framework, called HintStor, to execute and evaluate various I/O access hints on heterogeneous storage systems with minor modifications to the kernel and applications. The design of HintStor contains a new application/user level interface, a file system plugin and a block storage data manager. With HintStor, storage systems composed of various storage devices can perform pre-devised data placement, space reallocation and data migration polices assisted by the added access hints. Each storage device/technology has its own unique price-performance tradeoffs and idiosyncrasies with respect to workload characteristics they prefer to support. To explore the internal access patterns and thus efficiently place data on storage systems with fully connected (i.e., data can move from one device to any other device instead of moving tier by tier) differential pools (each pool consists of storage devices of a particular type), we propose a chunk-level storage-aware workload analyzer framework, simplified as ChewAnalyzer. With ChewAnalzyer, the storage manager can adequately distribute and move the data chunks across different storage pools. To reduce the duplicate content transferred between local storage devices and devices in remote data centers, an inline Network Redundancy Elimination (NRE) process with Content-Defined Chunking (CDC) policy can obtain a higher Redundancy Elimination (RE) ratio but may suffer from a considerably higher computational requirement than fixed-size chunking. We build an inline NRE appliance which incorporates an improved FPGA based scheme to speed up CDC processing. To efficiently utilize the hardware resources, the whole NRE process is handled by a Virtualized NRE (VNRE) controller. The uniqueness of this VNRE that we developed lies in its ability to exploit the redundancy patterns of different TCP flows and customize the chunking process to achieve a higher RE ratio
    corecore