7,540 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    A comparison of resource allocation process in grid and cloud technologies

    Get PDF
    Grid Computing and Cloud Computing are two different technologies that have emerged to validate the long-held dream of computing as utilities which led to an important revolution in IT industry. These technologies came with several challenges in terms of middleware, programming model, resources management and business models. These challenges are seriously considered by Distributed System research. Resources allocation is a key challenge in both technologies as it causes the possible resource wastage and service degradation. This paper is addressing a comprehensive study of the resources allocation processes in both technologies. It provides the researchers with an in-depth understanding of all resources allocation related aspects and associative challenges, including: load balancing, performance, energy consumption, scheduling algorithms, resources consolidation and migration. The comparison also contributes an informal definition of the Cloud resource allocation process. Resources in the Cloud are being shared by all users in a time and space sharing manner, in contrast to dedicated resources that governed by a queuing system in Grid resource management. Cloud Resource allocation suffers from extra challenges abbreviated by achieving good load balancing and making right consolidation decision

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Parallel Differential Evolution approach for Cloud workflow placements under simultaneous optimization of multiple objectives

    Get PDF
    International audienceThe recent rapid expansion of Cloud computing facilities triggers an attendant challenge to facility providers and users for methods for optimal placement of workflows on distributed resources, under the often-contradictory impulses of minimizing makespan, energy consumption, and other metrics. Evolutionary Optimization techniques that from theoretical principles are guaranteed to provide globally optimum solutions, are among the most powerful tools to achieve such optimal placements. Multi-Objective Evolutionary algorithms by design work upon contradictory objectives, gradually evolving across generations towards a converged Pareto front representing optimal decision variables – in this case the mapping of tasks to resources on clusters. However the computation time taken by such algorithms for convergence makes them prohibitive for real time placements because of the adverse impact on makespan. This work describes parallelization, on the same cluster, of a Multi-Objective Differential Evolution method (NSDE-2) for optimization of workflow placement, and the attendant speedups that bring the implicit accuracy of the method into the realm of practical utility. Experimental validation is performed on a real-life testbed using diverse Cloud traces. The solutions under different scheduling policies demonstrate significant reduction in energy consumption with some improvement in makespan

    Design and optimization of optical grids and clouds

    Get PDF
    • …
    corecore