96,653 research outputs found

    Relaxed Spatio-Temporal Deep Feature Aggregation for Real-Fake Expression Prediction

    Get PDF
    Frame-level visual features are generally aggregated in time with the techniques such as LSTM, Fisher Vectors, NetVLAD etc. to produce a robust video-level representation. We here introduce a learnable aggregation technique whose primary objective is to retain short-time temporal structure between frame-level features and their spatial interdependencies in the representation. Also, it can be easily adapted to the cases where there have very scarce training samples. We evaluate the method on a real-fake expression prediction dataset to demonstrate its superiority. Our method obtains 65% score on the test dataset in the official MAP evaluation and there is only one misclassified decision with the best reported result in the Chalearn Challenge (i.e. 66:7%) . Lastly, we believe that this method can be extended to different problems such as action/event recognition in future.Comment: Submitted to International Conference on Computer Vision Workshop

    MiVOLO: Multi-input Transformer for Age and Gender Estimation

    Full text link
    Age and gender recognition in the wild is a highly challenging task: apart from the variability of conditions, pose complexities, and varying image quality, there are cases where the face is partially or completely occluded. We present MiVOLO (Multi Input VOLO), a straightforward approach for age and gender estimation using the latest vision transformer. Our method integrates both tasks into a unified dual input/output model, leveraging not only facial information but also person image data. This improves the generalization ability of our model and enables it to deliver satisfactory results even when the face is not visible in the image. To evaluate our proposed model, we conduct experiments on four popular benchmarks and achieve state-of-the-art performance, while demonstrating real-time processing capabilities. Additionally, we introduce a novel benchmark based on images from the Open Images Dataset. The ground truth annotations for this benchmark have been meticulously generated by human annotators, resulting in high accuracy answers due to the smart aggregation of votes. Furthermore, we compare our model's age recognition performance with human-level accuracy and demonstrate that it significantly outperforms humans across a majority of age ranges. Finally, we grant public access to our models, along with the code for validation and inference. In addition, we provide extra annotations for used datasets and introduce our new benchmark.Comment: For the project repository, please visit: https://github.com/WildChlamydia/MiVOL
    • …
    corecore