118,379 research outputs found

    Asymptotic Errors for Teacher-Student Convex Generalized Linear Models (or : How to Prove Kabashima's Replica Formula)

    Full text link
    There has been a recent surge of interest in the study of asymptotic reconstruction performance in various cases of generalized linear estimation problems in the teacher-student setting, especially for the case of i.i.d standard normal matrices. Here, we go beyond these matrices, and prove an analytical formula for the reconstruction performance of convex generalized linear models with rotationally-invariant data matrices with arbitrary bounded spectrum, rigorously confirming a conjecture originally derived using the replica method from statistical physics. The formula includes many problems such as compressed sensing or sparse logistic classification. The proof is achieved by leveraging on message passing algorithms and the statistical properties of their iterates, allowing to characterize the asymptotic empirical distribution of the estimator. Our proof is crucially based on the construction of converging sequences of an oracle multi-layer vector approximate message passing algorithm, where the convergence analysis is done by checking the stability of an equivalent dynamical system. We illustrate our claim with numerical examples on mainstream learning methods such as sparse logistic regression and linear support vector classifiers, showing excellent agreement between moderate size simulation and the asymptotic prediction.Comment: 19 pages,25 appendix,4 figure

    System Identification for Nonlinear Control Using Neural Networks

    Get PDF
    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique
    corecore