13,747 research outputs found

    Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition

    Full text link
    In this work we present a framework for the recognition of natural scene text. Our framework does not require any human-labelled data, and performs word recognition on the whole image holistically, departing from the character based recognition systems of the past. The deep neural network models at the centre of this framework are trained solely on data produced by a synthetic text generation engine -- synthetic data that is highly realistic and sufficient to replace real data, giving us infinite amounts of training data. This excess of data exposes new possibilities for word recognition models, and here we consider three models, each one "reading" words in a different way: via 90k-way dictionary encoding, character sequence encoding, and bag-of-N-grams encoding. In the scenarios of language based and completely unconstrained text recognition we greatly improve upon state-of-the-art performance on standard datasets, using our fast, simple machinery and requiring zero data-acquisition costs

    Where and Who? Automatic Semantic-Aware Person Composition

    Full text link
    Image compositing is a method used to generate realistic yet fake imagery by inserting contents from one image to another. Previous work in compositing has focused on improving appearance compatibility of a user selected foreground segment and a background image (i.e. color and illumination consistency). In this work, we instead develop a fully automated compositing model that additionally learns to select and transform compatible foreground segments from a large collection given only an input image background. To simplify the task, we restrict our problem by focusing on human instance composition, because human segments exhibit strong correlations with their background and because of the availability of large annotated data. We develop a novel branching Convolutional Neural Network (CNN) that jointly predicts candidate person locations given a background image. We then use pre-trained deep feature representations to retrieve person instances from a large segment database. Experimental results show that our model can generate composite images that look visually convincing. We also develop a user interface to demonstrate the potential application of our method.Comment: 10 pages, 9 figure

    Interactive Vegetation Rendering with Slicing and Blending

    Get PDF
    Detailed and interactive 3D rendering of vegetation is one of the challenges of traditional polygon-oriented computer graphics, due to large geometric complexity even of simple plants. In this paper we introduce a simplified image-based rendering approach based solely on alpha-blended textured polygons. The simplification is based on the limitations of human perception of complex geometry. Our approach renders dozens of detailed trees in real-time with off-the-shelf hardware, while providing significantly improved image quality over existing real-time techniques. The method is based on using ordinary mesh-based rendering for the solid parts of a tree, its trunk and limbs. The sparse parts of a tree, its twigs and leaves, are instead represented with a set of slices, an image-based representation. A slice is a planar layer, represented with an ordinary alpha or color-keyed texture; a set of parallel slices is a slicing. Rendering from an arbitrary viewpoint in a 360 degree circle around the center of a tree is achieved by blending between the nearest two slicings. In our implementation, only 6 slicings with 5 slices each are sufficient to visualize a tree for a moving or stationary observer with the perceptually similar quality as the original model
    • …
    corecore