127,517 research outputs found

    A novel active learning technique for multi-label remote sensing image scene classification

    Get PDF
    Copyright 2018 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.This paper presents a novel multi-label active learning (MLAL) technique in the framework of multi-label remote sensing (RS) image scene classification problems. The proposed MLAL technique is developed in the framework of the multi-label SVM classifier (ML-SVM). Unlike the standard AL methods, the proposed MLAL technique redefines active learning by evaluating the informativeness of each image based on its multiple land-cover classes. Accordingly, the proposed MLAL technique is based on the joint evaluation of two criteria for the selection of the most informative images: i) multi-label uncertainty and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the multi-label classification algorithm in correctly assigning multi-labels to each image, whereas multi-label diversity criterion aims at selecting a set of un-annotated images that are as more diverse as possible to reduce the redundancy among them. In order to evaluate the multi-label uncertainty of each image, we propose a novel multi-label margin sampling strategy that: 1) considers the functional distances of each image to all ML-SVM hyperplanes; and then 2) estimates the occurrence on how many times each image falls inside the margins of ML-SVMs. If the occurrence is small, the classifiers are confident to correctly classify the considered image, and vice versa. In order to evaluate the multi-label diversity of each image, we propose a novel clustering-based strategy that clusters all the images inside the margins of the ML-SVMs and avoids selecting the uncertain images from the same clusters. The joint use of the two criteria allows one to enrich the training set of images with multi-labels. Experimental results obtained on a benchmark archive with 2100 images with their multi-labels show the effectiveness of the proposed MLAL method compared to the standard AL methods that neglect the evaluation of the uncertainty and diversity on multi-labels.EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEart

    Deep Active Learning Explored Across Diverse Label Spaces

    Get PDF
    abstract: Deep learning architectures have been widely explored in computer vision and have depicted commendable performance in a variety of applications. A fundamental challenge in training deep networks is the requirement of large amounts of labeled training data. While gathering large quantities of unlabeled data is cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. Thus, developing algorithms that minimize the human effort in training deep models is of immense practical importance. Active learning algorithms automatically identify salient and exemplar samples from large amounts of unlabeled data and can augment maximal information to supervised learning models, thereby reducing the human annotation effort in training machine learning models. The goal of this dissertation is to fuse ideas from deep learning and active learning and design novel deep active learning algorithms. The proposed learning methodologies explore diverse label spaces to solve different computer vision applications. Three major contributions have emerged from this work; (i) a deep active framework for multi-class image classication, (ii) a deep active model with and without label correlation for multi-label image classi- cation and (iii) a deep active paradigm for regression. Extensive empirical studies on a variety of multi-class, multi-label and regression vision datasets corroborate the potential of the proposed methods for real-world applications. Additional contributions include: (i) a multimodal emotion database consisting of recordings of facial expressions, body gestures, vocal expressions and physiological signals of actors enacting various emotions, (ii) four multimodal deep belief network models and (iii) an in-depth analysis of the effect of transfer of multimodal emotion features between source and target networks on classification accuracy and training time. These related contributions help comprehend the challenges involved in training deep learning models and motivate the main goal of this dissertation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Deep Active Learning for Multi-Label Classification of Remote Sensing Images

    Full text link
    In this letter, we introduce deep active learning (AL) for multi-label classification (MLC) problems in remote sensing (RS). In particular, we investigate the effectiveness of several AL query functions for MLC of RS images. Unlike the existing AL query functions (which are defined for single-label classification or semantic segmentation problems), each query function in this paper is based on the evaluation of two criteria: i) multi-label uncertainty; and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the deep neural networks (DNNs) in correctly assigning multi-labels to each image. To assess this criterion, we investigate three strategies: i) learning multi-label loss ordering; ii) measuring temporal discrepancy of multi-label predictions; and iii) measuring magnitude of approximated gradient embeddings. The multi-label diversity criterion is associated to the selection of a set of images that are as diverse as possible to each other that prevents redundancy among them. To assess this criterion, we exploit a clustering based strategy. We combine each of the above-mentioned uncertainty strategies with the clustering based diversity strategy, resulting in three different query functions. All the considered query functions are introduced for the first time in the framework of MLC problems in RS. Experimental results obtained on two benchmark archives show that these query functions result in the selection of a highly informative set of samples at each iteration of the AL process.Comment: Accepted to IEEE Geoscience and Remote Sensing Letter

    One-bit Supervision for Image Classification: Problem, Solution, and Beyond

    Full text link
    This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification. Instead of training model using the accurate label of each sample, our setting requires the model to interact with the system by predicting the class label of each sample and learn from the answer whether the guess is correct, which provides one bit (yes or no) of information. An intriguing property of the setting is that the burden of annotation largely alleviates in comparison to offering the accurate label. There are two keys to one-bit supervision, which are (i) improving the guess accuracy and (ii) making good use of the incorrect guesses. To achieve these goals, we propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm. Theoretical analysis shows that one-bit annotation is more efficient than full-bit annotation in most cases and gives the conditions of combining our approach with active learning. Inspired by this, we further integrate the one-bit supervision framework into the self-supervised learning algorithm which yields an even more efficient training schedule. Different from training from scratch, when self-supervised learning is used for initialization, both hard example mining and class balance are verified effective in boosting the learning performance. However, these two frameworks still need full-bit labels in the initial stage. To cast off this burden, we utilize unsupervised domain adaptation to train the initial model and conduct pure one-bit annotations on the target dataset. In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.Comment: ACM TOMM. arXiv admin note: text overlap with arXiv:2009.0616

    Minimizing Supervision in Multi-label Categorization

    Full text link
    Multiple categories of objects are present in most images. Treating this as a multi-class classification is not justified. We treat this as a multi-label classification problem. In this paper, we further aim to minimize the supervision required for providing supervision in multi-label classification. Specifically, we investigate an effective class of approaches that associate a weak localization with each category either in terms of the bounding box or segmentation mask. Doing so improves the accuracy of multi-label categorization. The approach we adopt is one of active learning, i.e., incrementally selecting a set of samples that need supervision based on the current model, obtaining supervision for these samples, retraining the model with the additional set of supervised samples and proceeding again to select the next set of samples. A crucial concern is the choice of the set of samples. In doing so, we provide a novel insight, and no specific measure succeeds in obtaining a consistently improved selection criterion. We, therefore, provide a selection criterion that consistently improves the overall baseline criterion by choosing the top k set of samples for a varied set of criteria. Using this criterion, we are able to show that we can retain more than 98% of the fully supervised performance with just 20% of samples (and more than 96% using 10%) of the dataset on PASCAL VOC 2007 and 2012. Also, our proposed approach consistently outperforms all other baseline metrics for all benchmark datasets and model combinations.Comment: Accepted in CVPR-W 202
    • …
    corecore